Archivo de la categoría: calor

¿Cómo se destruye la capa de ozono?


La capa de ozono es la capa superficial que protege a la tierra de la radiación producida por los rayos ultravioleta (UVB) que emite el sol, actuando como un filtro, está compuesta por moléculas de ozono esparcidas en la estratosfera a una altura de 50 km. a nivel del mar (Ilustración 1. Capa de Ozono).

Ilustración 1. Capa de Ozono

En los últimos años esta capa se ha visto reducida considerablemente, debido en parte importante a la emisión de gases contaminantes usados por el hombre (Sustancias Agotadoras de la Capa de Ozono o SAOs), produciendo la disminución de la concentración de ozono en la atmósfera terrestre. A éste fenómeno se lo llama comúnmente “agujero de ozono”, y es un fenómeno el cual se halla afectando gravemente la salud de los seres humanos, todos los seres vivos del planeta y el medio ambiente.

En los años 70, científicos descubrieron que las SAOs (Sustancias Agotadoras de la Capa de Ozono) liberadas por el hombre en la atmósfera, dañan gravemente la capa de ozono, disminuyendo la concentración de ozono de la Antártida en aproximadamente un 70 % entre los años 70 y 90 comparada con su nivel de concentración normal de años previos.

Esto es producto de que la liberación de estas sustancias rompe el débil equilibrio entre la producción natural de moléculas de ozono y su descomposición, eliminando más rápidamente las mismas de lo que son capaces de reproducirse.

Diferencia entre agujero de ozono y cambio climático.

La reducción de ozono en la atmósfera o agujero de ozono, no es lo mismo que cambio climático o calentamiento global. Este último es producido por la emisión de gases de efecto invernadero que atrapan el calor emanado por la tierra en la atmósfera e impidiendo que se diluya, lo que hace que la atmósfera aumente su temperatura.

Ilustración 2. El efecto invernadero

Los gases que producen el efecto invernadero son el dióxido de carbono, el metano, CFCs, HCFCs y halones. El efecto invernadero de éstos gases se mide en PCG (Potencial de Calentamiento Global de la Atmósfera), que es la contribución de cada uno de éstos gases en el efecto invernadero, relativa la del dióxido de carbono cuyo PCG es de 1.

Los efectos del calentamiento global producen un impacto que incluye, aumento en el nivel del mar, efectos impredecibles en los ecosistemas y aumento en los desastres naturales. Algunas SAO también contribuyen a aumentar el efecto invernadero (Ilustración 2. Efecto Invernadero).

¿Qué es una sustancia que agota la capa de ozono?

En el marco del Protocolo de Montreal, se identificó un número de sustancias que agotan la capa de ozono (SAOs), desde ese momento se ha tratado de controlar la producción y emisión de las mismas.

Las SAOs tienen un enorme poder destructivo ya que algunas de ellas pueden permanecer en el ambiente entre 100 y 400 años. Estas reaccionan con las moléculas de ozono en una reacción en fotoquímica en cadena, una vez que destruye una molécula de ozono está lista para destruir más, por consiguiente puede destruir miles de moléculas de ozono.

Las SAO incluyen básicamente, hidrocarburos, clorinados, fluorinados y brominados entre ellas:

  • Clorofluorocarbonos (CFC)
  • Hidroclorofluorocarbonos (HCFC)
  • Halones
  • Hidrobromofluorocarbonos (HBFC)
  • Bromoclorometano
  • Metilcloroformo
  • Tetracloruro de carbono, y
  • Bromuro de metilo

La capacidad que estas sustancias químicas tienen para agotar la capa de ozono es medida por el PAO (Potencial de Agotamiento del Ozono). En esta escala a cada sustancia se le asigna un PAO relativo al CFC-11, cuyo PAO por definición tiene el valor 1.

Las SAOs se liberan a la atmósfera de las siguientes maneras:

  • Uso común de solventes de limpieza, equipos para combatir el fuego, pinturas y aerosoles.
  • Despresurización y fuga durante el mantenimiento de los sistemas de refrigeración y aire acondicionado.
  • Uso del bromuro de metilo en la fumigación del suelo.
  • Eliminación de productos y equipos como espumas y refrigeradores.
  • Circuitos de refrigeración que presentan fugas.

Las SAOs una vez liberadas alcanzarán la atmósfera, diluyéndose en el aire y pudiendo alcanzar la estratósfera debido a su larga vida, afectando de esta manera la capa de ozono.

Los avances tecnológicos de avanzada permiten que Quimobásicos participe en el mercado Mexicano con productos de última generación que contribuyen a la conservación y correcto desarrollo de la vida en el planeta con índices prácticamente nulos de PAO y PCG, entre stos productos de última generación pueden contabilizarse al Nuevo Agente de Limpieza Eco FLush HFO-1233zd y al refrigerante de uso automotriz Solstice HFO-1234yf (Ilustración 3).

Ilustración 3. Productos de última Generación Quimobásicos Eco FLush HFO-1233zd y Solstice HFO-1234yf

Si tienes comentarios al respecto de la publicación o si te parece útil te agradecemos que nos comentes en este tu Blog, en nuestra página de Facebook o en la cuenta de Twitter que en Quimobásicos ponemos a tu disposición para comunicación directa, también puedes consultar con el Distribuidor Oficial más cercano a ti dando clic aquí.

¿Tienes dudas adicionales y que no hayamos resuelto en este artículo? Por favor deja un comentario con la duda al final de la publicación, o si gustas puedes contactarnos en nuestras redes sociales de FacebookTwitter  o YouTube.

En Quimobásicos nos interesa mucho saber tu opinión sobre nuestras publicaciones, ya que con ello nos ayudas a mejorar continuamente. No dudes en dejarnos tu comentario, crítica o sugerencia que tengas sobre la empresa, los productos Genetron o sobre nuestros contenidos.

Ventajas de los sistemas de AC Inverter


Seguramente que hemos escuchado más de una vez que un aire acondicionado Inverter consume menos energía que un aire acondicionado convencional, sin embargo, muchos desconocemos cuales son las ventajas que tienen este tipo de equipos.

¿Por qué se dice que un aire acondicionado Inverter gasta menos electricidad que uno convencional? El motivo principal está en el componente de mayor consumo energético: “El compresor”, y en la tecnología de su tarjeta electrónica.

En los aires acondicionados convencionales el compresor siempre se encuentra funcionando al 100% de su capacidad. Por ejemplo, si encendemos un aire acondicionado convencional en temporada de verano y ajustamos la temperatura a 23°C y la temperatura del área externa se encuentra en 30°C, el sistema convencional encenderá el compresor a su máxima potencia al momento comenzar a trabajar, y se apagara cuando llegue a la temperatura que se ajustó, en este caso de 23°C. Al momento de subir de nuevo la temperatura interior, el compresor volverá a arrancar al 100% de su capacidad hasta volver a llegar a la temperatura deseada. Este proceso se repetirá mientras el aire acondicionado se encuentre encendido. Es importante recordar que los mayores picos de consumos energéticos en un sistema de refrigeración se producen al momento de encender el compresor.

¿Cómo funciona una máquina de aire acondicionado Inverter para ser más eficiente?

El aire acondicionado Inverter es capaz de controlar la potencia del compresor, a través de una tarjeta electrónica inteligente que controla los paros y arranques del compresor, que son los que más demanda energía generan. Esta tarjeta o control mantendrá el equipo funcionando hasta alcanzar la temperatura deseada en el cuarto y el equipo no se apagará, si no que mantendrá una velocidad menor. Esto ayudad a evitar los picos de consumo energético que se generan con los arranques abruptos del compresor.

De esta manera el compresor ahorra en un día de funcionamiento continuo muchos arranques y paros, produciendo un ahorro en un año de entre el 30 y el 60% de energía eléctrica. Otra ventaja de los equipos de aire acondicionado Inverter es su disminución del ruido en comparación con los equipos convencionales. Dada la nueva tecnología, los compresores de un aire acondicionado Inverter alcanza menos decibeles que el de una maquina convencional

Sin embargo, muchos clientes consideran que la diferencia de precio entre un equipo Inverter y uno convencional es muy alta. Y llegan a esta conclusión antes de considerar que esa cantidad de dinero se pagará sola con el ahorro de energía reflejado en el recibo de la luz.

Un tema importante saber que hoy en día no solo los climas cuentas con esta nueva tecnología, también podemos encontrar, Refrigeradores domésticos, Equipos de Refrigeración media / baja temperatura compresor como moto-variador, entre varios equipos más.

Si tienes comentarios al respecto de la publicación o si te parece útil te agradecemos que nos comentes en este tu Blog, en nuestra página de Facebook o en la cuenta de Twitter que en Quimobásicos ponemos a tu disposición.

¿Tienes dudas adicionales y que no hayamos resuelto en este artículo? Por favor deja un comentario con la duda al final de la publicación, o si gustas puedes contactarnos en nuestras redes sociales de FacebookTwitter  o YouTube.

En Quimobásicos nos interesa mucho saber tu opinión sobre nuestras publicaciones, ya que con ello nos ayudas a mejorar continuamente. No dudes en dejarnos tu comentario, crítica o sugerencia que tengas sobre la empresa, los productos Genetron o sobre nuestros contenidos.

El aire acondicionado automotriz

 

La diferencia que el aire acondicionado ha hecho al automovilismo es difícil de pasar por alto. Atrás quedaron los días en que el calor del motor afectaba a los pasajeros del auto; También se han ido los días en los que se tenían que bajar todos los vidrios de las ventanas para que fluya suficiente aire fresco a través de la cabina.

El concepto de los sistemas modernos de aire acondicionado se originó en los Estados Unidos. Su desarrollo no fue el resultado de la búsqueda de una mayor comodidad, sino el resultado de problemas con el papel. La compañía Sackett & Wilhelms Lithography & Printing Company (S&W), con sede en Nueva York, estaba teniendo problemas con su papel: a medida que la humedad en las salas de impresión variaba, el papel se encogería o expandiría.

Esto puede parecer un problema relativamente menor, pero, para S&W, fue un problema grave. Debido a que la compañía estaba tratando de imprimir documentos de varios colores, en el que los colores se aplicaban uno por uno, las dimensiones minuciosamente cambiantes del papel causaron estragos en la calidad de cada impresión.

Willis Carrier fue el encargado de resolver ese problema que tanto aquejaba a S&W. Después de todo, la tecnología existente permite a los ingenieros controlar la temperatura del aire y alterar su humedad, pero no se ha logrado un control preciso de estos innumerables factores, particularmente la humedad.

Carrier desarrolló posteriormente bobinas de calentamiento y enfriamiento de precisión, que podrían regular con precisión la temperatura del aire y, por lo tanto, ayudar a controlar el contenido de humedad en el aire. Sus investigaciones y diseños, detallados en dibujos dieron como resultado el primer sistema eléctrico de aire acondicionado de producción. Estaba en pleno funcionamiento, en la planta de Sackett & Wilhelms, a principios de 1903.

Desarrollos posteriores llevaron a General Motors, por su marca Cadillac, a interesarse más por el aire acondicionado. Del mismo modo, el archirrival de Cadillac, Packard, vio el aire acondicionado como una adición útil a su alineación. A fines de 1939, había finalizado un diseño y, superando a GM, presentó su ‘Weather-Conditioner’, disponible en el modelo 180.

Era casi lo mismo que encontraría en la actualidad al interior del automóvil, con compresor , condensador, evaporador y secador. Sin embargo, solo se instaló un control que regulaba la velocidad del ventilador y no había control de temperatura. Si algún pasajero deseaba apagarlo, tenía que quitar manualmente la correa del compresor ya que no se instaló ningún sistema de embrague.

La configuración complicada y principalmente montada en el maletero se retiró después de 1941. Y para 1953, GM, Chrysler y Packard introdujeron configuraciones más prácticas. Un año después, la extinta firma Nash Motors lanzó el primer automóvilequipado con un sistema compacto de motor de aire acondicionado como lo conocemos hoy en día. Este elemento vió la introducción de un sistema compacto de embrague montado en la parte delantera.

Denominado ‘All-Weather Eye’, era un sistema mucho más barato, pequeño y menos pesado, pues únicamente pesaba 60 kilos, la mitad de algunos otros sistemas; Además, puede considerarse el padre de todos los sistemas posteriores en automóviles.

En 1964, Cadillac introdujo un sistema de control climático llamado ‘Control de confort’. Al igual que los sistemas actuales, todo lo que el conductor tenía que hacer era elegir la temperatura y el sistema se esforzaría por alcanzar y mantener el clima deseado.

En cualquier caso, a medida que la carrera para mejorar la comodidad de los pasajeros se aceleró, el aire acondicionado se volvió mucho menos exclusivo y más barato, en la medida en que es bastante difícil comprar un automóvil nuevo sin él en la mayoría de los países.

Actualmente los dos refrigerantes utilizados en aire acondicionado automotriz son el R-134a y el HFO-1234yf. Ambos nos encargamos en Quimobásicos de distribuirlos a gran parte de las armadoras automotrices de nuestro país además de en la red de distribuidores Quimobásicos para el mantenimiento de los vehículos.

¿Tienes dudas adicionales y que no hayamos resuelto en este artículo? Por favor deja un comentario con la duda al final de la publicación, o si gustas puedes contactarnos en nuestras redes sociales de FacebookTwitter  o YouTube.

En Quimobásicos nos interesa mucho saber tu opinión sobre nuestras publicaciones, ya que con ello nos ayudas a mejorar continuamente. No dudes en dejarnos tu comentario, crítica o sugerencia que tengas sobre la empresa, los productos Genetron o sobre nuestros contenidos.

Fuente: https://bit.ly/2Phge7Y

Conceptos Básicos de Refrigeración y Aire Acondicionado. 2ª Entrega: Sobre Calor y Energía


Los técnicos en el área de refrigeración y aire acondicionado estamos acostumbrados a trabajar con gran variedad de equipos y herramientas; sin embargo, muchos desconocemos las definiciones o significados de los términos que comúnmente utilizamos en el día a día de nuestro trabajo.

En esta publicación nos encargaremos dar una definición a aquellas palabras que escuchamos en nuestro ámbito laboral y de las cuales en algunas ocasiones desconocemos su significado en su totalidad.

Estos son los términos y sus significados:

CALOR. Es la forma de energía generada por el movimiento de las moléculas de un cuerpo. Si el movimiento es menor, la cantidad de calor será igual que la del movimiento, es decir, menor; en cambio si ocurre lo contrario, la carga mayor de movimiento provocará que la temperatura se eleve.

Ilustración 1: El calor puede ser medido en Celsius o Faranheit.

BTU (British Thermal Unit). Unidad de medida inglesa que se utiliza para medir una cantidad de calor. Un BTU se define como la cantidad de calor necesaria para aumentar (o disminuir) en un grado Fahrenheit la temperatura de una libra de agua.

TONELADA DE REFRIGERACIÓN. Se refiere a la capacidad de extracción de la carga térmica de un equipo de refrigeración. Es definida además como la cantidad de calor requerida para convertir una tonelada de hielo en agua en una hora. Una tonelada de refrigeración equivale a 12,000 BTU.

Ilustración 2: Conversión de unidades útiles para el cálculo en aire acondicionado

CALOR LATENTE.Se le llama así al calor necesario para producir un cambio de estado en una sustancia sin que exista un cambio de temperatura. Un ejemplo muy claro de esto es cuando ocurre el cambio de estado líquido a vapor del agua. Cuando el agua llega a los 100° C, mantiene su temperatura en esa misma cantidad hasta que se evapora por completo.

CALOR SENSIBLE.Es el calor causante de que una sustancia aumente su temperatura. Provoca un aumento o disminución de la temperatura, mientras que el calor latente solo produce un cambio de estado (líquido, vapor o sólido).

CONDENSACIÓN.Es un cambio de estado provocado por la extracción de calor (enfriamiento) donde los gases pasan a estado líquido.

EVAPORACIÓN.Es lo contrario a la condensación. Este cambio es producido por la introducción de calor (calentamiento) a un líquido para que pase al estado gaseoso.

CONDUCCIÓN.Se trata de la transferencia de calor a través de los sólidos. Esta transferencia ocurre cuando dos cuerpos con diferentes temperaturas entran en contacto directo provocando que el cuerpo con mayor temperatura seda parte de ella al cuerpo de menor temperatura, esto hasta que ambos posean la misma temperatura.

Figura 3: Ejemplo de convección

CONVECCIÓN.Es la transferencia de calor por medio de cuerpos en estado líquido o sólido. Un ejemplo de convección es cuando usamos el horno. Primero se calienta el aire de la cabina del horno para después encargarse de calentar la comida dentro del horno. La convección es la transferencia entre el aire y la comida.

CONVECCIÓN FORZADA.Es igual a la convección normal, pero con la diferencia de que en ésta aceleramos la transferencia de calor con medios externos. Por ejemplo, cuando usamos un abanico estamos forzando al aire a que fluya más rápido y absorba el exceso de temperatura corporal a mayor velocidad.

RADIACIÓN.Se le conoce así a la transferencia de calor por medio de ondas electromagnéticas. El ejemplo más claro de la radiación son los rayos solares, éstos poseen ondas electromagnéticas que calienten los objetos que se interponen en su camino. De esta forma es como los pavimentos de las calles, donde los rayos del sol dan directamente, se calientan de manera exorbitante por la absorción del calor de las ondas electromagnéticas.

Esperamos que los conceptos dados en este artículo hayan sido de ayuda para ampliar la comprensión de nuestro trabajo; si crees conveniente que otros deban aprender sobre ellos no dudes en compartir.

Si tienes comentarios al respecto de la publicación o si te parece útil te agradecemos que nos comentes en este tu Blog, en nuestra página de Facebook o en la cuenta de Twitter que en Quimobásicos ponemos a tu disposición.


¿Tienes dudas adicionales y que no hayamos resuelto en este artículo? Por favor deja un comentario con la duda al final de la publicación, o si gustas puedes contactarnos en nuestras redes sociales de FacebookTwitter  o YouTube.

En Quimobásicos nos interesa mucho saber tu opinión sobre nuestras publicaciones, ya que con ello nos ayudas a mejorar continuamente. No dudes en dejarnos tu comentario, crítica o sugerencia que tengas sobre la empresa, los productos Genetron o sobre nuestros contenidos.

Conceptos sobre presión y humedad | 1era Entrega


La publicación de esta semana tiene por tema hacer un repaso de algunos de los conceptos básicos del área de Refrigeración y Aire Acondicionado que son parte del día a día en nuestras labores; en esta ocasión repasaremos algunos términos esenciales en la labor del técnico en refrigeración o profesional en aire acondicionado.

Esta es la primera de una serie de tres recopilaciones de conceptos, en esta publicación nos enfocaremos en algunos conceptos relacionados a la presión y la humedad.

HUMEDAD.

La cantidad de agua que se encuentra dispersa en el ambiente (aire) se le conoce como humedad. Cuando el aire llega a contener la máxima cantidad de agua permisible, es cuando se genera el concepto de saturación de agua en el aire. Se le conoce dos formas distintas de humedad en nuestro ambiente laboral, la humedad relativa y la humedad específica.

Ilustración 1: Humedad relativa y específica

HUMEDAD ESPECÍFICA.

Se define como la cantidad de masa (peso) de vapor de agua disuelto en el aire (humedad). Se expresa en unidades de libras de vapor de agua por libra de aire seco (aire con 0% de humedad)

HUMEDAD RELATIVA.

Es conocida como el porcentaje del grado de saturación de vapor de agua en el aire. Se expresa en una escala de 0 a 100%. Por ejemplo, se dice que cuando la humedad relativa es 0%, es porque no existe nada de agua disuelta en el aire. Un valor de humedad relativa de 50% nos indica que el aire a aceptado la mitad de la cantidad máxima de agua que puede absorber. Por último decimos que la humedad relativa del 100% ocurre cuando se llega a la saturación de agua en el aire.

SATURACIÓN.

Se le conoce como saturación a la concentración máxima de un compuesto disuelto en otro. Es decir, que ya no puede agregar ni un solo gramo del compuesto que se disuelve en el otro. Por ejemplo, cuando el ambiente (aire) ya no puede absorber más agua (humedad) es que el aire está saturado de agua.

PRESIÓN ATMOSFÉRICA.

En la presión que ejerce el aire que existe en el ambiente a la superficie de la tierra. Mientras más cerca nos encontremos del nivel del mar, va a existir más aire sobre nosotros, lo que genera una presión mayor. Si nos encontramos a una altura muy por encima del nivel del mar, tenemos menos aire sobre nosotros generando una menor presión atmosférica.

TRANSFERENCIA DE CALOR.

La transferencia de calor es el proceso físico donde la energía interna de un cuerpo (que podemos medir como la temperatura) se mueve a un cuerpo con menor energía que el anterior. Por ejemplo, si tenemos un cuerpo a 100°C y lo sumergimos en una gran cantidad de agua fría, la energía del cuerpo caliente se transferirá al agua fría generando que la temperatura del cuerpo caliente disminuya. Es importante mencionar que la energía siempre fluye del cuerpo más caliente al más frío.

PUNTO DE ROCÍO.

El punto de rocío ocurre en el momento en que se enfría el aire saturado de humedad, disminuyendo su capacidad de absorción de vapor de agua. Esto genera que el agua que ya no puede estar disuelta en aire se comience a condensar, generado unas pequeñas gotas de agua.

Ilustración 2: ejemplo de punto de rocío

REFRIGERANTE.

Se le conoce como refrigerante a las sustancias con bajos puntos de ebullición (menores a los -15°C) que se utilizan como medios para robar el calor del ambiente y desplazarlo a otra zona.

Esperamos que estas definiciones les ayuden a complementar sus conocimientos en el ámbito de la refrigeración.


¿Tienes dudas adicionales y que no hayamos resuelto en esta publicación? Por favor deja un comentario con la duda al final de la publicación, o si gustas puedes contactarnos en nuestras redes sociales de FacebookTwitter  o YouTube. En Quimobásicos nos interesa mucho saber tu opinión sobre nuestras publicaciones, ya que con ello nos ayudas a mejorar continuamente. No dudes en dejarnos cualquier comentario, duda o sugerencia que tengas sobre esta publicación.

A %d blogueros les gusta esto: