Archivo de la categoría: válvula de expansión

Guía Rápida de Conceptos de Refrigeración (tercera parte)

Conceptos de refrigeración tercera parte: Dispositivos de control de flujo

En archivos anteriores hemos revisado algunos de los conceptos esenciales para entender el amplio ámbito de la refrigeración. Para complementar la información que ya hemos aprendido, les traemos esta tercera parte de conceptos de refrigeración. Cabe recalcar que en esta sección nos centraremos definir los diferentes tipos de dispositivos de control de flujo.

Llámese un dispositivo de control de flujo a aquellos componentes del sistema de refrigeración encargados de regular el flujo del refrigerante líquido en los evaporadores. Sin conocidos por dividir el sistema de refrigeración, al igual que el compresor, en la parte de alta presión y de baja presión.

Diferentes tipos de dispositivos de control de flujo:

Tubo capilar. Este dispositivo de control es el más básico de todos, y está formado por un pequeño tubo cuya perforación a lo largo de su interior es muy pequeña. Este tipo de dispositivos solo se encuentran en equipos que poseen un gabinete, y en sistemas inundados (cuyo 75% del volumen está lleno de refrigerante). Este tipo de dispositivo no se considera una válvula debido a que no se puede ajustar, y no se puede controlar de otra forma más que con el diámetro interior del tubo. Por lo tanto, el tamaño del tuvo debe estar adecuado al sistema específico.

Válvula termostática de expansión (VTE). Este dispositivo de control es el más utilizado en los sistemas de refrigeración. Funciona a través de la temperatura y la presión. La abertura en la válvula controla el flujo del refrigerante, mientras que una aguja controla la velocidad del flujo mediante un bulbo que siempre contiene líquido. Para esto, se mide y compara la temperatura del compresor con la del bulbo y la aguja abrirá la válvula dependiendo de las necesidades del evaporador. A mayor temperatura del evaporador, mayor será la abertura de la válvula.

Resultado de imagen para Válvula automática de expansión

Válvula automática de expansión (VAE). Este tipo de dispositivo controla el flujo del refrigerante de la línea del líquido manteniendo la presión constante en el evaporador. Este sistema trabaja muy similar a la VTE, pero en lugar de controlar la temperatura controla la presión del evaporador. La válvula no permitirá que fluya líquido al compresor a menos que se reduzca la presión del mismo.

Válvula termoeléctrica de expansión (VTEE). Este dispositivo consta de dos partes, la válvula que controla el flujo y un sensor eléctrico que mide el calor por medio de termistores. El termistor se define como un conductor eléctrico que cambia su conductividad (capacidad para conducir electricidad) cuando existe un cambio en la temperatura. A mayor temperatura, los termistores conducen mayor electricidad. Cuando el evaporador tiene una temperatura elevada los termistores aumentan el voltaje provocando que el sensor interprete el incremento en el voltaje como un aumento en la temperatura, incitando a que la válvula se abra y permita un mayor flujo de refrigerante.

De manera resumida, podemos decir que los dispositivos de control de flujo tienen la responsabilidad de evitar que llegue líquido al compresor, evitando daños en el mismo.

 


Si tienes comentarios al respecto de la siguiente entrada o si te parece útil te agradecemos que nos comentes en este tu Blog, nuestra página de Facebook o en la cuenta de Twitter que en Quimobásicos ponemos a tu disposición.

¿Tienes alguna duda adicional que no hayamos resuelto en esta publicación? Por favor escríbela en los comentarios al final de esta publicación, o si lo prefieres, contáctenos en nuestras redes sociales: Facebook, Twitter, Google+ y YouTube.

En Quimobásicos nos interesa mucho tu opinión, ya que nos ayuda a brindarte un mejor servicio, por favor no dudes en hacernos saber cualquier comentario, critica, o sugerencia que tengas sobre la empresa, los productos Genetron, o el blog mismo.

Conceptos de refrigeración tercera parte: Dispositivos de control de flujo

Conceptos de refrigeración tercera parte: Dispositivos de control de flujo

En archivos anteriores hemos revisado algunos de los conceptos esenciales para entender el amplio ámbito de la refrigeración. Para complementar la información que ya hemos aprendido, les traemos esta tercera parte de conceptos de refrigeración. Cabe recalcar que en esta sección nos centraremos definir los diferentes tipos de dispositivos de control de flujo.

Llámese un dispositivo de control de flujo a aquellos componentes del sistema de refrigeración encargados de regular el flujo del refrigerante líquido en los evaporadores. Sin conocidos por dividir el sistema de refrigeración, al igual que el compresor, en la parte de alta presión y de baja presión.

Diferentes tipos de dispositivos de control de flujo:

Tubo capilar. Este dispositivo de control es el más básico de todos, y está formado por un pequeño tubo cuya perforación a lo largo de su interior es muy pequeña. Este tipo de dispositivos solo se encuentran en equipos que poseen un gabinete, y en sistemas inundados (cuyo 75% del volumen está lleno de refrigerante). Este tipo de dispositivo no se considera una válvula debido a que no se puede ajustar, y no se puede controlar de otra forma más que con el diámetro interior del tubo. Por lo tanto, el tamaño del tuvo debe estar adecuado al sistema específico.

Válvula termostática de expansión (VTE). Este dispositivo de control es el más utilizado en los sistemas de refrigeración. Funciona a través de la temperatura y la presión. La abertura en la válvula controla el flujo del refrigerante, mientras que una aguja controla la velocidad del flujo mediante un bulbo que siempre contiene líquido. Para esto, se mide y compara la temperatura del compresor con la del bulbo y la aguja abrirá la válvula dependiendo de las necesidades del evaporador. A mayor temperatura del evaporador, mayor será la abertura de la válvula.

Resultado de imagen para Válvula automática de expansión

Válvula automática de expansión (VAE). Este tipo de dispositivo controla el flujo del refrigerante de la línea del líquido manteniendo la presión constante en el evaporador. Este sistema trabaja muy similar a la VTE, pero en lugar de controlar la temperatura controla la presión del evaporador. La válvula no permitirá que fluya líquido al compresor a menos que se reduzca la presión del mismo.

Válvula termoeléctrica de expansión (VTEE). Este dispositivo consta de dos partes, la válvula que controla el flujo y un sensor eléctrico que mide el calor por medio de termistores. El termistor se define como un conductor eléctrico que cambia su conductividad (capacidad para conducir electricidad) cuando existe un cambio en la temperatura. A mayor temperatura, los termistores conducen mayor electricidad. Cuando el evaporador tiene una temperatura elevada los termistores aumentan el voltaje provocando que el sensor interprete el incremento en el voltaje como un aumento en la temperatura, incitando a que la válvula se abra y permita un mayor flujo de refrigerante.

De manera resumida, podemos decir que los dispositivos de control de flujo tienen la responsabilidad de evitar que llegue líquido al compresor, evitando daños en el mismo.

 


Si tienes comentarios al respecto de la siguiente entrada o si te parece útil te agradecemos que nos comentes en este tu Blog, nuestra página de Facebook o en la cuenta de Twitter que en Quimobásicos ponemos a tu disposición.

¿Tienes alguna duda adicional que no hayamos resuelto en esta publicación? Por favor escríbela en los comentarios al final de esta publicación, o si lo prefieres, contáctenos en nuestras redes sociales: Facebook, Twitter, Google+ y YouTube.

En Quimobásicos nos interesa mucho tu opinión, ya que nos ayuda a brindarte un mejor servicio, por favor no dudes en hacernos saber cualquier comentario, critica, o sugerencia que tengas sobre la empresa, los productos Genetron, o el blog mismo.

Comprendiendo el deslizamiento de temperatura del refrigerante

Importancia del deslizamiento de temperatura y conceptos relacionados.

Todos los técnicos en refrigeración son conscientes de la utilidad que tiene una tabla de presión vs temperatura a la hora de realizar su trabajo, sin embargo, no todos entendemos la forma correcta de leerlas. Para ello explicaremos los conceptos de los famosos puntos de rocío y burbuja, y las diferencias entre los refrigerantes puros y las mezclas.

En los refrigerantes más comunes, la temperatura del serpentín se puede leer a partir de la escala de temperatura que muestra el indicador o calibrador, facilitando su medición, sin embargo, en los otros refrigerantes, la tarea se vuelve un poco más complicada debido al deslizamiento de temperatura.

El deslizamiento de temperatura del refrigerante determinará la forma que tomará la Tabla de Presión vs. Temperatura. Por lo tanto, es necesario revisar de manera rápida los principales conceptos básicos sobre el tema:

  • El deslizamiento ocurre porque los diferentes gases que componen una mezcla de refrigerantes poseen diferentes temperaturas de ebullición, lo que genera que las composiciones de la fase líquida y vapor sean diferentes dentro de un sistema cerrado.
  • Debido a las diferencias de temperatura, los gases más volátiles se evaporan primero, generando que la temperatura de ebullición de la fase líquida vaya aumentando cada vez que se evapora más producto.
  • La temperatura de evaporación promedio se ubica entre la temperatura en la que el refrigerante comienza a hervir a la entrada del dispositivo de expansión y en la que deja de hervir en la parte final del evaporador.
  • El deslizamiento de temperatura promedio es usado para comparar el punto de ebullición en cada refrigerante y con ello obtener la misma temperatura promedio del serpentín.
  • El deslizamiento de temperatura en el condensador ocurre de la misma manera que en el evaporador, pero el proceso es revertido a medida que los componentes se condensan en diferentes escalas en la entrada y la salida.
  • El punto de burbuja es la temperatura donde aparece la primera burbuja de un líquido que comienza a hervir, mientras que el punto de rocío es la temperatura donde aparece la primera gota de líquido de un vapor que se empieza a condensar.

Para entender de manera gráfica los conceptos, se muestran a continuación dos diagramas que representan la evaporación/Condensación de un compuesto puro y una mezcla.

Para un componente puro, solo observamos un punto donde un vapor comienza a cambiar a estado líquido; o un líquido comienza a cambiar a vapor. Mientras ocurre el cambio de estado, la temperatura se mantiene constate. Esto es debido a que la energía requerida para realizar el cambio de fase se consume en su totalidad, evitando cambios en la energía interna del compuesto.

Como podemos observar en la gráfica para una mezcla zeotrópica, al ocurrir primero el cambio de estado de los compuestos más volátiles, la temperatura a lo largo del cambio de fase empieza a va en aumento hasta que se ocurre la evaporación/condensación en su totalidad.

Si tienes comentarios al respecto de esta publicación o si te parece útil te agradecemos que nos comentes en este tu Blog, a nuestro correo electrónico de contacto, a nuestra página de Facebook o en la cuenta de Twitter que en Quimobásicos ponemos a tu disposición.

 

 

Humedad en sistemas de Refrigeración


Humedad en sistemas de Refrigeración

En varias ocasiones se ha hablado sobre la importancia del proceso de vacío aplicado a los sistemas de refrigeración. Gracias al vacío, podemos depurar el sistema interno de impurezas que pueden dañar o disminuir la eficiencia y capacidad del refrigerante; y una de las impurezas más relevantes en nuestro ámbito es la humedad.

Muchos técnicos desconocen de forma parcial o total la forma correcta de ejecutar el proceso de vacío. Al omitir o hacer de forma incorrecta el proceso, nos atenemos a un mal funcionamiento de los equipos a los que les damos servicio, traduciéndose en visitas costos extras al momento en que los clientes exigen su garantía.

Uno de los principales errores cometidos al aplicar vacío a los sistemas de refrigeración, es utilizar equipos no aptos para el proceso tales como compresores que utilizamos como sustitutos a las bombas de vacío, o la utilización del mismo compresor del sistema de refrigeración para generar el vacío requerido. También solemos prescindir del equipo adecuado de medición de vacío correspondiente y lo sustituimos con el conteo del tiempo que la bomba de vacío lleva encendida.

Dicho lo anterior, podemos preguntarnos: ¿Qué sucede cuando dejamos rastros de humedad al aplicar de manera incorrecta el vacío al sistema?

Al existir humedad en el sistema existe la gran probabilidad de que se genere hielo en las partes internas del ciclo de refrigeración, principalmente el tubo capilar o válvula de expansión. Esto genera daños importantes a la unidad más cara de todo el sistema, el compresor.

Los dos síntomas principales son el exceso de refrigerante suministrado por la válvula, o la disminución o paro completo del suministro de gas por la válvula. Estos problemas ocasionan:

  • Que la temperatura del aire o agua suministrado sea alta.
  • El sobrecalentamiento excesivo del sistema o sobrecalentamiento inexistente.
  • La presión de succión puede ser menor o mayor de lo recomendado.
  • La presencia de líquido en el compresor.

Sin embargo, el principal problema ocurre con la presencia de aire y humedad. El aire y la humedad, al combinarse con los refrigerantes que contienen cloro o flúor, generan compuestos ácidos que deteriora los sistemas herméticos y semiherméticos; ocasionando problemas prematuros al motocompesor debido a su gran poder corrosivo. Adicionalmente, es importante comentar que los fabricantes de compresores no otorgan ningún tipo de garantía para problemas generados por presencia de humedad en el sistema.

Ahora que conocemos la importancia de eliminar la humedad y el aire de los sistemas de refrigeración, debemos prepararnos adecuadamente para realizar los procesos de vacío de manera correcta y con los equipos necesarios. En próximas entregas expondremos las buenas prácticas para la limpieza de sistemas de refrigeración por vacío.


¿Tienes alguna duda adicional que no hayamos resuelto en esta publicación? Por favor escríbela en los comentarios al final de esta publicación, o si lo prefieres, contáctanos en nuestras redes sociales: Facebook, Twitter, Google+ y YouTube.

En Quimobásicos nos interesa mucho tu opinión, ya que nos ayuda a brindarte un mejor servicio, por favor no dudes en hacernos saber cualquier comentario, critica, o sugerencia que tengas sobre la empresa, los productos Genetron, o el blog mismo

A %d blogueros les gusta esto: