Archivo del sitio

Lo que tienes que saber del deslizamiento, 2da Entrega

Muchos técnicos se encuentran acostumbrados a usar refrigerantes que actúan con un solo componente con una temperatura de punto de ebullición que no cambia con el evaporador o el condensador. Pero con la mezcla zeotrópica, la temperatura en el evaporador será más fría en el inicio de la bobina que al final y la temperatura en el condensador será más caliente al inicio que al final. Simplemente se pone las diferencias en estas temperaturas es el deslizamiento.

Para el proceso del deslizamiento hay varios gases en los que se puede desarrollar:

  • En los gases 401A, 407C, 404A, entre otros.
  • Dentro de las mezclas azeotrópicas, El 410A , el compuesto es una mezcla debido a que el deslizamiento de temperatura es solo 0,1 C º, lo hace una mezcla muy estable.

Entendiendo que el deslizamiento es la clave para mantener la temperatura deseada y proteger al compresor:

  • Líquido con pocas burbujas (lo más frio).
  • Vapor y líquidos iguales.
  • Vapor y las últimas gotas de líquido (más caliente).

 

Figura 1. Representación del evaporador al sondensador

¿Por qué es importante el deslizamiento?

Debido a los distintos componentes en la mezcla cuenta con un punto de ebullición a diferentes temperaturas, la temperatura en la bobina va a variar al momento en que la mezcla empiece a hervir. Si la expansión del ajuste de la válvula no se hace usando un punto de rocío, dos cosas pasarían. Primero, el líquido puede no evaporarse antes que alcance al compresor, lo cual causaría ineficiencia y daría lugar a algún daño. Segundo, la mezcla puede bullir para afuera por medio del evaporador, conduciendo a una pérdida de eficiencia requerida para arreglar la temperatura.

Configuración del evaporador de presión

En esta tabla de Honeywell Solstice N40 PT, si se desea alcanzar una temperatura promedio de bobina de 20° F, como se nota en el número (4). Usando la tabla como referencia, nosotros sabemos que podemos empezar por medio de la configuración de la presión de 52 psig(19).

Tabla 1. Temperatura vs Presión

Configuración del sobrecalentamiento

En condición para configurar el sobrecalentamiento, se encuentra la temperatura del punto de Rocío correspondiente a la bobina de presión. La presión de la bobina de evaporación y la temperatura de rocío como son mostrados en los números 1 y 2 en la tabla anterior. Para alcanzar el sobrecalentamiento se compara con la temperatura de rocío de la tabla anterior para la tubería de salida. La diferencia en estas dos se encuentra en las temperaturas del sobrecalentamiento. En este ejemplo, cuando la temperatura es 51 psig y la temperatura de la turbina es de 30 grados, el sobrecalentamiento será de 30 menos 25, o 5 grados. Al momento de continuar para tomar las lecturas de temperaturas, se puede ajustar al sobrecalentamiento y la presión como se necesite hasta que haya alcanzado la temperatura deseada la bobina.

Cuando se ajusta un sistema de sobrecalentamiento o sub congelamiento usando un refrigerante con deslizamiento, recuerde que la presión es constante a través del evaporador o condensador mientras la temperatura va a cambiar durante la ebullición en el evaporador o condensar en el condensador.

Figura 2. Configuración del sobrecalentamiento


¿Tienes alguna duda adicional que no hayamos resuelto en esta publicación? Escríbela por favor en los comentarios al final de esta publicación, o si lo prefieres contáctanos en nuestro FacebookTwitterGoogle Plus o canal de YouTube.

En Quimobásicos nos interesa mucho tu opinión, ya que nos ayuda a brindarte un mejor servicio, por favor no dudes en hacernos saber cualquier comentario, critica o sugerencia que tengas sobre la empresa, los productos de nuestras marcas Solstice® y Genetron®, o el blog mismo.

Deslizamiento de temperatura (Glide) ¿Por qué es sumamente importante conocerla? 1ra Entrega

La mayoría de los técnicos en refrigeración y aire acondicionado somos conscientes de la utilidad que tiene una tabla de presión contra la temperatura a la hora de hacer nuestro trabajo, sin embargo, no todos logramos entender la forma correcta de leerlas. Es por eso que hoy nos hemos dado un tiempo para explicar los conceptos: punto de rocío y punto de burbuja, además de las principales diferencias entre los refrigerantes puros y las mezclas.

En los refrigerantes más comunes, la temperatura del serpentín puede ser leída a partir de la escala de temperatura que se muestra en el indicador y calibrador, facilitando de esta forma su medición; sin embargo, no todos los refrigerantes tienen esta función, existen algunos donde la tarea se vuelve más complicada a causa del deslizamiento de temperatura.

Este deslizamiento de temperatura es la que ayudará a determinar la forma que tomará la tabla de presión contra la temperatura. Por esto es necesario revisar de manera inmediata los principales conceptos de este tema:

  • El desplazamiento ocurre a partir de que los distintos gases que componen la mezcla del refrigerante poseen una amalgama de temperaturas de ebullición lo cual genera una diferencia entre las composiciones de la fase líquida y la de vapor dentro de un sistema cerrado.
  • A causa de esta diferencia en la temperatura, los gases más volubles suelen evaporarse primero haciendo que la temperatura de ebullición de la fase líquida vaya en aumento cada vez que se evapora más el producto.
  • La temperatura de evaporación promedio se encuentra entre la temperatura en la que el refrigerante empieza a hervir, hacia la entrada del dispositivo de expansión, y en la que deja de hervir en la parte final del evaporador.
  • Un dato más sobre el deslizamiento de temperatura es que es usado para comparar los puntos de ebullición de cada refrigerante obteniendo de esta manera la misma temperatura promedio para el serpentín.
  • Otro dato sobre el deslizamiento es que en el condensador sucede lo mismo que en el evaporador, aunque el proceso es revestido a medida que los componentes se condensan a distintas escalas tanto en las entradas como en las salidas.
  • Por otro lado, el punto burbuja trata sobre la temperatura donde aparece la primera burbuja de ebullición, mientras que en el punto de rocío ocurre lo contrario: el vapor se empieza a condensar.

 

Para entender de manera gráfica los conceptos, se muestran a continuación dos diagramas que representan la evaporación/Condensación de un compuesto puro y una mezcla.

Para un componente puro, se puede observar un punto donde su vapor empieza a cambiar a estado líquido, o cuando ese líquido cambia a vapor. Mientras sucede este cambio, la temperatura se mantiene constante. Lo anterior se debe a que la energía requerida para realizar el cambio de una fase a otra se gasta en su totalidad, evitando de esta forma los cambios en la energía interna del compuesto.

Como se puede observar en la gráfica para una mezcla zeotrópica, al ser primero el cambio de estado de los compuestos altamente volátiles, la temperatura durante el proceso va en aumento hasta llegar a la evaporación o condensación en su totalidad.


¿Tienes alguna duda adicional que no hayamos resuelto en esta publicación? Escríbela por favor en los comentarios al final de esta publicación, o si lo prefieres contáctanos en nuestro FacebookTwitterGoogle Plus o canal de YouTube.

En Quimobásicos nos interesa mucho tu opinión, ya que nos ayuda a brindarte un mejor servicio, por favor no dudes en hacernos saber cualquier comentario, critica o sugerencia que tengas sobre la empresa, los productos de nuestras marcas Solstice® y Genetron®, o el blog mismo.

Dispositivos de control de flujo, 3a Entrega

A lo largo de esta y anteriores publicaciones hemos visto distintos conceptos que nos ayudan a entender de mejor manera el ámbito de la refrigeración. Con el fin de completar la información obtenida y aprendida, les hemos traído esta tercera parte de los conceptos de refrigeración. Hoy nos enfocaremos en definir los diferentes tipos de dispositivos de control de flujo.
Para empezar debemos hacernos primero esta pregunta ¿qué son los dispositivos de control de flujo? Se conocen con este nombre a aquellos componentes del sistema de refrigeración encargados de regular el refrigerante líquido en los evaporadores. Son conocidos por dividir el sistema de refrigeración, de igual manera que lo hace el compresor, en alta y baja presión.

Funcionamiento de dispositivo de control de flujo

Diferentes tipos de dispositivos de control de flujo:

• Tubo capilar: este dispositivo de control es el más básico de todos, se encuentra formado por un pequeño tubo perforado a lo largo de su interior, pero esta perforación es muy pequeña. Dispositivos como este solo se encuentran en equipos que poseen gabinete y en sistemas inundados (un 75% del volumen del equipo es refrigerante). A este dispositivo no se le considera una válvula debido a que no cuenta con un mecanismo de ajuste y por tal motivo no es controlable de otra manera, excepto por la perforación de su interior. Por lo tanto, el tamaño del tuvo debe estar adecuado al sistema específico.

Tubo Capilar

• Válvula termostática de expansión (VTE): este dispositivo es el más usado en los sistemas de refrigeración. Funciona con ayuda de la temperatura y la presión, y tiene una abertura que controla el flujo del refrigerante; mientras una aguja se encarga de controlar la velocidad del flujo mediante un bulbo que siempre contiene líquido. Para esto se mide y compara la temperatura del compresor con la del bulbo, y la aguja abrirá la válvula dependiendo de las necesidades del evaporador. A mayor temperatura del evaporador, mayor será la abertura de la válvula.

Válvula termoeléctrica de expansión

 

Resultado de imagen para Válvula automática de expansión

• Válvula automática de expansión (VAE): se encarga de controlar el flujo del refrigerante de la línea del líquido manteniendo la presión constante en el evaporador. El sistema funciona de forma semejante al del VTE, pero en lugar de controlar la temperatura controla la presión del evaporador. Esta válvula no permitirá que el líquido vaya al compresor a menos que se reduzca la presión del mismo.

Válvula automática de expansión (VAE)

• Válvula termoeléctrica de expansión (VTEE). Este dispositivo consta de dos partes, la válvula que controla el flujo y un sensor eléctrico que mide el calor por medio de termistores. El termistor se define como un conductor eléctrico que cambia su conductividad (capacidad para conducir electricidad) cuando existe un cambio en la temperatura. A mayor temperatura, los termistores conducen mayor electricidad. Cuando el evaporador tiene una temperatura elevada los termistores aumentan el voltaje provocando que el sensor interprete el incremento en el voltaje como un aumento en la temperatura, incitando a que la válvula se abra y permita un mayor flujo de refrigerante.

De esta manera, se podría decir que los dispositivos de control de flujo cargan con la responsabilidad de evitar que el líquido llegue al compresor, evitando así daños en el mismo.

Válvula termoeléctrica de expansión (VTEE)

Si tienes comentarios al respecto de la publicación o si te parece útil te agradecemos que nos comentes en este tu Blog, en nuestra página de Facebook o en la cuenta de Twitter que en Quimobásicos ponemos a tu disposición.

¿Tienes dudas adicionales y que no hayamos resuelto en este artículo? Por favor deja un comentario con la duda al final de la publicación, o si gustas puedes contactarnos en nuestras redes sociales de FacebookTwitter  o YouTube.

En Quimobásicos nos interesa mucho saber tu opinión sobre nuestras publicaciones, ya que con ello nos ayudas a mejorar continuamente. No dudes en dejarnos tu comentario, crítica o sugerencia que tengas sobre la empresa, los productos Genetron o sobre nuestros contenidos.

 

Conceptos sobre el calor y energía, 2a Entrega

Como técnico en el área de refrigeración y aire acondicionado quizás te encuentres acostumbrado a trabajar con algunos términos desconocidos para ti. Es por eso que hoy en este artículo hablaremos sobre algunos de estos conceptos para explicarte más a detalle lo que son y cómo son empleados en el trabajo.

Estos son los términos y sus significados:

Calor

Es la forma de energía generada por el movimiento de las moléculas de un cuerpo. Si el movimiento es menor, la cantidad de calor será igual que la del movimiento, es decir, menor; en cambio si ocurre lo contrario, la carga mayor de movimiento provocará que la temperatura se eleve.

El calor puede ser medido en Celsius o Faranheit

BTU (British Thermal Unit)

Unidad de medida inglesa que se utiliza para medir una cantidad de calor. Un BTU se define como la cantidad de calor necesaria para aumentar (o disminuir) en un grado Fahrenheit la temperatura de una libra de agua.

Tonelada de refrigeración

Se refiere a la capacidad de extracción de la carga térmica de un equipo de refrigeración. Es definida además como la cantidad de calor requerida para convertir una tonelada de hielo en agua en una hora. Una tonelada de refrigeración equivale a 12,000 BTU.

Conversión de unidades útiles para el cálculo en aire acondicionado

 

Calor latente

Se le llama así al calor necesario para producir un cambio de estado en una sustancia sin que exista un cambio de temperatura. Un ejemplo muy claro de esto es cuando ocurre el cambio de estado líquido a vapor del agua. Cuando el agua llega a los 100° C, mantiene su temperatura en esa misma cantidad hasta que se evapora por completo.

Calor sensible

Es el calor causante de que una sustancia aumente su temperatura. Provoca un aumento o disminución de la temperatura, mientras que el calor latente solo produce un cambio de estado (líquido, vapor o sólido).

Condensación

Es un cambio de estado provocado por la extracción de calor (enfriamiento) donde los gases pasan a estado líquido.

Evaporación

Es lo contrario a la condensación. Este cambio es producido por la introducción de calor (calentamiento) a un líquido para que pase al estado gaseoso.

Conducción

Se trata de la transferencia de calor a través de los sólidos. Esta transferencia ocurre cuando dos cuerpos con diferentes temperaturas entran en contacto directo provocando que el cuerpo con mayor temperatura seda parte de ella al cuerpo de menor temperatura, esto hasta que ambos posean la misma temperatura.

Convección

Es la transferencia de calor por medio de cuerpos en estado líquido o sólido. Un ejemplo de convección es cuando usamos el horno. Primero se calienta el aire de la cabina del horno para después encargarse de calentar la comida dentro del horno. La convección es la transferencia entre el aire y la comida.

Ejemplo de convección en la vida diaria

Convección forzada

Es igual a la convección normal, pero con la diferencia de que en ésta aceleramos la transferencia de calor con medios externos. Por ejemplo, cuando usamos un abanico estamos forzando al aire a que fluya más rápido y absorba el exceso de temperatura corporal a mayor velocidad.

Radiación

Se le conoce así a la transferencia de calor por medio de ondas electromagnéticas. El ejemplo más claro de la radiación son los rayos solares, éstos poseen ondas electromagnéticas que calienten los objetos que se interponen en su camino. De esta forma es como los pavimentos de las calles, donde los rayos del sol dan directamente, se calientan de manera exorbitante por la absorción del calor de las ondas electromagnéticas.

Esperamos que los conceptos dados en este artículo hayan sido de ayuda para ampliar la comprensión de nuestro trabajo; si crees conveniente que otros deban aprender sobre ellos no dudes en compartir.

Si tienes comentarios al respecto de la publicación o si te parece útil te agradecemos que nos comentes en este tu Blog, en nuestra página de Facebook o en la cuenta de Twitter que en Quimobásicos ponemos a tu disposición.

¿Tienes dudas adicionales y que no hayamos resuelto en este artículo? Por favor deja un comentario con la duda al final de la publicación, o si gustas puedes contactarnos en nuestras redes sociales de FacebookTwitter  o YouTube.

En Quimobásicos nos interesa mucho saber tu opinión sobre nuestras publicaciones, ya que con ello nos ayudas a mejorar continuamente. No dudes en dejarnos tu comentario, crítica o sugerencia que tengas sobre la empresa, los productos Genetron o sobre nuestros contenidos.

 

Líneas de Refrigerante

A lo largo de diferentes publicaciones hemos tratado varios conceptos teóricos utilizados en el área de refrigeración y aire acondicionado, también hemos repasado el uso y descripción de otros elementos como son los compresores, condensadores y  dispositivos de control de flujo.

A continuación intentaremos repasar un poco más a profundidad las Líneas de Refrigeración; como su nombre indica, es la sección encargada de la conducción del refrigerante de una parte del sistema a la otra; y como bien sabemos, el refrigerante lo podemos encontrar en estado líquido o vapor dependiendo de la sección en que se encuentre del sistema de refrigeración.

En la mayoría de los casos, las líneas de refrigerante están construidas por tubos de cobre rígido, aunque en algunos países se permite el uso de tubos de cobre flexibles en el extremo de la unidad condensadora y en los accesorios. Sin embargo, las partes de un sistema de refrigeración no se encuentran conectadas una a lado de la otra, más bien se encuentran unidas a través de un sistema de tuberías que reciben el nombre de ‘líneas de refrigerante’ (Ver Figura 1).

Figura 1. Elementos de una Línea de Refrigerante típica.

 

Los sistemas de refrigeración cuentan con 3 líneas principales las cuales te explicamos a detalle a continuación y las cuales puedes observar en el diagrama superior.

 

Líneas de líquido.

En esta línea el refrigerante y el aceite se mezclan adecuadamente. Aún cuando el líquido se mueva lentamente y existan trampas en la línea el aceite nunca quedará atrapado. Debe existir suficiente presión en la línea para evitar que el dispositivo de control de flujo trabaja incorrectamente. Para evitar una caída de presión excesiva se recomienda sub enfriar el líquido.


Líneas de succión.

Existen problemas de diseco, principalmente cuando se utilizan compresores reciprocantes (los que utilizan cilindros y pistones para comprimir). Esta debe tener el diámetro apropiado para compensar la pérdida de presión ocasionada cuando el sistema trabaja a su máxima capacidad. Esta línea debe ser capaz de regresar el aceite del evaporador al compresor cuando el sistema traba a velocidades lentas.

 

Líneas de descarga.

Conocida como línea de gas caliente, es una línea con pocos problemas en los sistemas que tienen el condensador integrado. Esta línea se debe disecar de tal manera que no retenga el aceite del compresor.

Todas las tuberías de que componen las líneas de refrigerante deben ser del tamaño correcto para la cantidad de líquido o vapor a las que fueron disecadas, incluyendo el diámetro correcto, la longitud y el calibre de la tubería. Esto es de vital importancia ya que un mal diseco provoca una pérdida de presión del refrigerante en las líneas, y es perjudicial para el sub enfriamiento de la línea del líquido. Esto ocasiona que la válvula de expansión no realice adecuadamente su trabajo. También existen problemas con el compresor y el evaporador cuando hay bajas presiones en el sistema.

Si tienes comentarios al respecto de la siguiente publicación o si te parece útil te agradecemos que nos comentes en este tu Blog, nuestra página de Facebook o en la cuenta de Twitter que en Quimobásicos ponemos a tu disposición.

¿Tienes dudas adicionales y que no hayamos resuelto en este artículo? Por favor deja un comentario con la duda al final de la publicación, o si gustas puedes contactarnos en nuestras redes sociales de FacebookTwitter  o YouTube.

En Quimobásicos nos interesa mucho saber tu opinión sobre nuestras publicaciones, ya que con ella ayudas a que brindemos un mejor servicio mediante nuestras publicaciones. Por favor no dudes en dejarnos tu comentario, crítica o sugerencia que tengas sobre la empresa, los productos Genetron o el Blog y sus contenidos.

A %d blogueros les gusta esto: