Archivo del sitio

Dispositivos de control de flujo, 3a Entrega

A lo largo de esta y anteriores publicaciones hemos visto distintos conceptos que nos ayudan a entender de mejor manera el ámbito de la refrigeración. Con el fin de completar la información obtenida y aprendida, les hemos traído esta tercera parte de los conceptos de refrigeración. Hoy nos enfocaremos en definir los diferentes tipos de dispositivos de control de flujo.
Para empezar debemos hacernos primero esta pregunta ¿qué son los dispositivos de control de flujo? Se conocen con este nombre a aquellos componentes del sistema de refrigeración encargados de regular el refrigerante líquido en los evaporadores. Son conocidos por dividir el sistema de refrigeración, de igual manera que lo hace el compresor, en alta y baja presión.

Funcionamiento de dispositivo de control de flujo

Diferentes tipos de dispositivos de control de flujo:

• Tubo capilar: este dispositivo de control es el más básico de todos, se encuentra formado por un pequeño tubo perforado a lo largo de su interior, pero esta perforación es muy pequeña. Dispositivos como este solo se encuentran en equipos que poseen gabinete y en sistemas inundados (un 75% del volumen del equipo es refrigerante). A este dispositivo no se le considera una válvula debido a que no cuenta con un mecanismo de ajuste y por tal motivo no es controlable de otra manera, excepto por la perforación de su interior. Por lo tanto, el tamaño del tuvo debe estar adecuado al sistema específico.

Tubo Capilar

• Válvula termostática de expansión (VTE): este dispositivo es el más usado en los sistemas de refrigeración. Funciona con ayuda de la temperatura y la presión, y tiene una abertura que controla el flujo del refrigerante; mientras una aguja se encarga de controlar la velocidad del flujo mediante un bulbo que siempre contiene líquido. Para esto se mide y compara la temperatura del compresor con la del bulbo, y la aguja abrirá la válvula dependiendo de las necesidades del evaporador. A mayor temperatura del evaporador, mayor será la abertura de la válvula.

Válvula termoeléctrica de expansión

 

Resultado de imagen para Válvula automática de expansión

• Válvula automática de expansión (VAE): se encarga de controlar el flujo del refrigerante de la línea del líquido manteniendo la presión constante en el evaporador. El sistema funciona de forma semejante al del VTE, pero en lugar de controlar la temperatura controla la presión del evaporador. Esta válvula no permitirá que el líquido vaya al compresor a menos que se reduzca la presión del mismo.

Válvula automática de expansión (VAE)

• Válvula termoeléctrica de expansión (VTEE). Este dispositivo consta de dos partes, la válvula que controla el flujo y un sensor eléctrico que mide el calor por medio de termistores. El termistor se define como un conductor eléctrico que cambia su conductividad (capacidad para conducir electricidad) cuando existe un cambio en la temperatura. A mayor temperatura, los termistores conducen mayor electricidad. Cuando el evaporador tiene una temperatura elevada los termistores aumentan el voltaje provocando que el sensor interprete el incremento en el voltaje como un aumento en la temperatura, incitando a que la válvula se abra y permita un mayor flujo de refrigerante.

De esta manera, se podría decir que los dispositivos de control de flujo cargan con la responsabilidad de evitar que el líquido llegue al compresor, evitando así daños en el mismo.

Válvula termoeléctrica de expansión (VTEE)

Si tienes comentarios al respecto de la publicación o si te parece útil te agradecemos que nos comentes en este tu Blog, en nuestra página de Facebook o en la cuenta de Twitter que en Quimobásicos ponemos a tu disposición.

¿Tienes dudas adicionales y que no hayamos resuelto en este artículo? Por favor deja un comentario con la duda al final de la publicación, o si gustas puedes contactarnos en nuestras redes sociales de FacebookTwitter  o YouTube.

En Quimobásicos nos interesa mucho saber tu opinión sobre nuestras publicaciones, ya que con ello nos ayudas a mejorar continuamente. No dudes en dejarnos tu comentario, crítica o sugerencia que tengas sobre la empresa, los productos Genetron o sobre nuestros contenidos.

 

Conceptos sobre el calor y energía, 2a Entrega

Como técnico en el área de refrigeración y aire acondicionado quizás te encuentres acostumbrado a trabajar con algunos términos desconocidos para ti. Es por eso que hoy en este artículo hablaremos sobre algunos de estos conceptos para explicarte más a detalle lo que son y cómo son empleados en el trabajo.

Estos son los términos y sus significados:

Calor

Es la forma de energía generada por el movimiento de las moléculas de un cuerpo. Si el movimiento es menor, la cantidad de calor será igual que la del movimiento, es decir, menor; en cambio si ocurre lo contrario, la carga mayor de movimiento provocará que la temperatura se eleve.

El calor puede ser medido en Celsius o Faranheit

BTU (British Thermal Unit)

Unidad de medida inglesa que se utiliza para medir una cantidad de calor. Un BTU se define como la cantidad de calor necesaria para aumentar (o disminuir) en un grado Fahrenheit la temperatura de una libra de agua.

Tonelada de refrigeración

Se refiere a la capacidad de extracción de la carga térmica de un equipo de refrigeración. Es definida además como la cantidad de calor requerida para convertir una tonelada de hielo en agua en una hora. Una tonelada de refrigeración equivale a 12,000 BTU.

Conversión de unidades útiles para el cálculo en aire acondicionado

 

Calor latente

Se le llama así al calor necesario para producir un cambio de estado en una sustancia sin que exista un cambio de temperatura. Un ejemplo muy claro de esto es cuando ocurre el cambio de estado líquido a vapor del agua. Cuando el agua llega a los 100° C, mantiene su temperatura en esa misma cantidad hasta que se evapora por completo.

Calor sensible

Es el calor causante de que una sustancia aumente su temperatura. Provoca un aumento o disminución de la temperatura, mientras que el calor latente solo produce un cambio de estado (líquido, vapor o sólido).

Condensación

Es un cambio de estado provocado por la extracción de calor (enfriamiento) donde los gases pasan a estado líquido.

Evaporación

Es lo contrario a la condensación. Este cambio es producido por la introducción de calor (calentamiento) a un líquido para que pase al estado gaseoso.

Conducción

Se trata de la transferencia de calor a través de los sólidos. Esta transferencia ocurre cuando dos cuerpos con diferentes temperaturas entran en contacto directo provocando que el cuerpo con mayor temperatura seda parte de ella al cuerpo de menor temperatura, esto hasta que ambos posean la misma temperatura.

Convección

Es la transferencia de calor por medio de cuerpos en estado líquido o sólido. Un ejemplo de convección es cuando usamos el horno. Primero se calienta el aire de la cabina del horno para después encargarse de calentar la comida dentro del horno. La convección es la transferencia entre el aire y la comida.

Ejemplo de convección en la vida diaria

Convección forzada

Es igual a la convección normal, pero con la diferencia de que en ésta aceleramos la transferencia de calor con medios externos. Por ejemplo, cuando usamos un abanico estamos forzando al aire a que fluya más rápido y absorba el exceso de temperatura corporal a mayor velocidad.

Radiación

Se le conoce así a la transferencia de calor por medio de ondas electromagnéticas. El ejemplo más claro de la radiación son los rayos solares, éstos poseen ondas electromagnéticas que calienten los objetos que se interponen en su camino. De esta forma es como los pavimentos de las calles, donde los rayos del sol dan directamente, se calientan de manera exorbitante por la absorción del calor de las ondas electromagnéticas.

Esperamos que los conceptos dados en este artículo hayan sido de ayuda para ampliar la comprensión de nuestro trabajo; si crees conveniente que otros deban aprender sobre ellos no dudes en compartir.

Si tienes comentarios al respecto de la publicación o si te parece útil te agradecemos que nos comentes en este tu Blog, en nuestra página de Facebook o en la cuenta de Twitter que en Quimobásicos ponemos a tu disposición.

¿Tienes dudas adicionales y que no hayamos resuelto en este artículo? Por favor deja un comentario con la duda al final de la publicación, o si gustas puedes contactarnos en nuestras redes sociales de FacebookTwitter  o YouTube.

En Quimobásicos nos interesa mucho saber tu opinión sobre nuestras publicaciones, ya que con ello nos ayudas a mejorar continuamente. No dudes en dejarnos tu comentario, crítica o sugerencia que tengas sobre la empresa, los productos Genetron o sobre nuestros contenidos.

 

Líneas de Refrigerante

A lo largo de diferentes publicaciones hemos tratado varios conceptos teóricos utilizados en el área de refrigeración y aire acondicionado, también hemos repasado el uso y descripción de otros elementos como son los compresores, condensadores y  dispositivos de control de flujo.

A continuación intentaremos repasar un poco más a profundidad las Líneas de Refrigeración; como su nombre indica, es la sección encargada de la conducción del refrigerante de una parte del sistema a la otra; y como bien sabemos, el refrigerante lo podemos encontrar en estado líquido o vapor dependiendo de la sección en que se encuentre del sistema de refrigeración.

En la mayoría de los casos, las líneas de refrigerante están construidas por tubos de cobre rígido, aunque en algunos países se permite el uso de tubos de cobre flexibles en el extremo de la unidad condensadora y en los accesorios. Sin embargo, las partes de un sistema de refrigeración no se encuentran conectadas una a lado de la otra, más bien se encuentran unidas a través de un sistema de tuberías que reciben el nombre de ‘líneas de refrigerante’ (Ver Figura 1).

Figura 1. Elementos de una Línea de Refrigerante típica.

 

Los sistemas de refrigeración cuentan con 3 líneas principales las cuales te explicamos a detalle a continuación y las cuales puedes observar en el diagrama superior.

 

Líneas de líquido.

En esta línea el refrigerante y el aceite se mezclan adecuadamente. Aún cuando el líquido se mueva lentamente y existan trampas en la línea el aceite nunca quedará atrapado. Debe existir suficiente presión en la línea para evitar que el dispositivo de control de flujo trabaja incorrectamente. Para evitar una caída de presión excesiva se recomienda sub enfriar el líquido.


Líneas de succión.

Existen problemas de diseco, principalmente cuando se utilizan compresores reciprocantes (los que utilizan cilindros y pistones para comprimir). Esta debe tener el diámetro apropiado para compensar la pérdida de presión ocasionada cuando el sistema trabaja a su máxima capacidad. Esta línea debe ser capaz de regresar el aceite del evaporador al compresor cuando el sistema traba a velocidades lentas.

 

Líneas de descarga.

Conocida como línea de gas caliente, es una línea con pocos problemas en los sistemas que tienen el condensador integrado. Esta línea se debe disecar de tal manera que no retenga el aceite del compresor.

Todas las tuberías de que componen las líneas de refrigerante deben ser del tamaño correcto para la cantidad de líquido o vapor a las que fueron disecadas, incluyendo el diámetro correcto, la longitud y el calibre de la tubería. Esto es de vital importancia ya que un mal diseco provoca una pérdida de presión del refrigerante en las líneas, y es perjudicial para el sub enfriamiento de la línea del líquido. Esto ocasiona que la válvula de expansión no realice adecuadamente su trabajo. También existen problemas con el compresor y el evaporador cuando hay bajas presiones en el sistema.

Si tienes comentarios al respecto de la siguiente publicación o si te parece útil te agradecemos que nos comentes en este tu Blog, nuestra página de Facebook o en la cuenta de Twitter que en Quimobásicos ponemos a tu disposición.

¿Tienes dudas adicionales y que no hayamos resuelto en este artículo? Por favor deja un comentario con la duda al final de la publicación, o si gustas puedes contactarnos en nuestras redes sociales de FacebookTwitter  o YouTube.

En Quimobásicos nos interesa mucho saber tu opinión sobre nuestras publicaciones, ya que con ella ayudas a que brindemos un mejor servicio mediante nuestras publicaciones. Por favor no dudes en dejarnos tu comentario, crítica o sugerencia que tengas sobre la empresa, los productos Genetron o el Blog y sus contenidos.

Buenas prácticas al trabajar con escaleras

Los equipos como las escaleras, son herramientas importantes en nuestras aéreas de trabajo u hogares. Al momento de trabajar con éstas, sin importar el tipo de trabajo a realizar ni la duración, debes tener un listado de las actividades que vas a realizar, ya sea limpieza del serpentín de un condensador A/C montado en la pared ó el reemplazo de un motor de evaporador del minisplit, pintar la casa, etc. estas actividades deben estar en un listado. En caso de que no venga en el listado, no se debe autorizar.

Escaleras portátiles rectas

Todas las escaleras deben estar fabricadas con largueros de fibra de vidrio.

Las escaleras verticales portátiles, que se utilicen en los trabajos de altura, deberán tener zapatas antiderrapantes en los apoyos inferiores. Deberán ser sujetadas en su parte superior con cuerda para evitar su movimiento.

 

Escaleras de tijeras

Las escaleras de tijera deben cubrir los mismos requisitos de las escaleras rectas excepto en el diseño de los peldaños que en este caso son tipo recto y con hendiduras antiderrapantes.

Las escaleras de tijera no deben exceder una longitud de 3 metros. El tensor que une las dos secciones de una escalera de tijera deberá ser dos secciones solidas articuladas. No se aceptan cadenas o cables como sustitutos del tensor articulado.

Consejos de prudencia y precauciones al momento de usar escaleras

  1. No uses una escalera recta como andamio.
  2. Nunca coloques escaleras frente a puertas, a menos que hayan sido cerradas y bloqueadas.
  3. No uses tambores, sillas, escritorios, etc. como sustitutos de escaleras.
  4. No soportes la escalera sobre tuberías de fibra de vidrio, o tuberías que transporten ácidos o productos tóxicos o inflamables.
  5. Siempre sube y baja las escaleras colocándote de frente a ellas.
  6. No subas o bajes una escalera llevando objetos (carga) en una de las manos.
  7. Sólo una persona podrá hacer uso a la vez de una escalera (se debe respetar la carga de diseño, pues al duplicar esta, se corren riesgos innecesarios).
  8. La inclinación correcta en el uso de escaleras portátiles deberá ser la relación 1-4, es decir, 1 metro de separación de la pared por cada 4 metros de longitud de la escalera al objetivo.
  9. Al hacer uso de una escalera es obligatorio amarrar la escalera por la parte superior de preferencia y el trabajador usar cinturón de seguridad sujeto a una estructura independiente de la escalera.
  10. Al amarrar o desatar una escalera, deberá estar una persona abajo, deteniendo la escalera.
  11. Las escaleras deben inspeccionarse cuando menos una vez al mes.
  12. Verifica que tus zapatos no se encuentren lodosos o grasosos al usar este tipo de escaleras.
  13. No uses el descanso superior de las escaleras como peldaños.
  14. En algunas ocasiones por la altura que está trabajando deberás traer equipo de seguridad como lo es el arnés de vida.
  15. Cuando se esté maniobrando sobre una escalera vertical, por ningún motivo deberás estirarse hacia los lados donde está el punto de apoyo de la escalera

 

Cuidado de las escaleras

 

Manejo adecuado

Las escaleras, como cualquier otra herramienta, deben manejarse con cuidado y no deben someterse a golpes, choques ni mal uso innecesario. Están diseñadas con una finalidad específica: por lo tanto, toda desviación de este uso constituye un mal uso de las mismas.

Almacenamiento

Las escaleras deben colocarse en soportes diseñados para protegerlas cuando no están en uso. Estos soportes deben tener suficientes puntos de apoyo como para impedir que la escalera se doble excesivamente en el medio. Mientras la escalera esté almacenada, no se puede colocar nada sobre ella

Mantenimiento

En todo momento, las escaleras se deben mantener en buenas condiciones de uso. Los herrajes, conexiones y accesorios deben inspeccionarse con frecuencia y se deben mantener en buenas condiciones de uso. Todas las conexiones deben lubricarse frecuentemente con un aceite liviano y deben mantenerse en buenas condiciones. Antes de usar la escalera se deben revisar todos los tornillos; no debe usarse ninguna escalera si le faltara algún sujetador. No use la escalera si las zapatas estuvieran demasiado desgastadas. Asegúrese que aún estén en buenas condiciones para que el metal de las patas o los dispositivos de sujeción no estén en contacto con el piso.

Al momento de usar las escaleras deberás acordonar el área donde se realizarán labores de altura y evitar lesionar al personal que por esa área transite. Cuando termines de usar una escalera, deberá guardarla en su lugar y limpie el área donde trabajo.

Una escalera que presenta daños, debe retirarse para su sustitución y además una breve descripción del daño observado. Las escaleras deben mantenerse limpias de grasa, aceites y lodo, para evitar caídas o resbalones y en el caso de las escaleras de fibra de vidrio, evitar la conducción de electricidad. Almacena las escaleras colgadas en dos o más soportes o bien en el piso colocadas de canto y amarradas para evitar que caigan y lastimen a alguna persona.

 

Si tienes aún dudas al respecto de lo visto en está publicación, puedes dejarnos tus preguntas en la caja de comentarios u opiniones al respecto. Te agradeceremos mucho si le das a compartir a este Blog y no olvides consultar también a nuestros expertos a través del correo electrónico: asesor.quimobasicos@cydsa.com. Búscanos en nuestras redes sociales oficiales de FacebookTwitter, o Google+ y por medio de la nuestra página web.

 

LA EVOLUCIÓN DE LOS REFRIGERANTES

Los refrigerantes a través del tiempo

A lo largo de las últimas décadas, la industria de la refrigeración y el aire acondicionado ha tenido transformaciones importantes al utilizar tecnología cada vez más avanzada, logrando de esta forma un aumento significativo en cuanto a la eficiencia energética. De esta manera ayudan también en la preservación del medio ambiente. Sin embargo, el cambio más importante, pero menos difundido, es el relacionado al alma de los equipos, sin la cual el equipo no tendría la capacidad de hacer su trabajo: los gases refrigerantes.

De seguro, en algunas ocasiones, hemos escuchado el término de generación de refrigerantes, de los cuales en la actualidad nos encontramos en la 4ª generación. Estas generaciones son definidas acorde a la composición química de los gases refrigerantes que componen cada generación.

Las generaciones de los gases se pueden definir de la siguiente manera:

  • 1ª Generación compuesta por los Clorofluorocarbonos (CFC´s) que contienen cloro, fluor y carbono en su composición química.
  • 2ª Generación compuesta por los Hidroclorofluorocarbonos (HCFC´s) que contienen Hidrogeno, cloro, fluor y carbono en su composición química.
  • 3ª Generación compuesta por los Hidrofluorocarbonos (HFC´s) contienen Hidrogeno, fluor y carbono en su composición.
  • 4ª Generación son las Hidrofluoroolefinas (HFO´s) que Contienen Hidrogeneo, fluor y carbono al igual que los HFC’s, pero son compuestos insaturados (tienen doble enlace).

Si nos preguntamos la razones del porqué existen cuatro generaciones, la respuesta es que debido a las regulaciones ambientales, las cuales limitan el uso del cloro en los compuestos liberados al ambiente y el impacto de los gases liberados sobre el calentamiento global, es necesario renovarse constantemente. Ante lo anterior, los científicos han estado en busca de remplazos para los refrigerantes basados en dos factores que deterioran al ambiente: el agotamiento de la capa de ozono (ODP por sus siglas en ingles) y potencial de efecto invernadero (GWP por las siglas en ingles).

Las primeras dos generaciones de los refrigerantes se caracterizan por afectar a estos dos factores, principalmente por su alto contenido de cloro. La generación siguiente, la tercera, no ataca a la capa de ozono, aunque eso no quita que contenga un alto nivel de GWP. Y por último, la cuarta generación, contiene una mayor ventaja que las primeras dos generaciones y, al igual que la tercera, ésta pretende no atacar a la capa de ozono además de poseer un nivel bajo de GWP.

Cuando se conoce una amplia variedad de refrigerantes pueden surgir algunas preguntas como: ¿cuál refrigerante se debe usar?, ¿se puede sustituir un refrigerante por otro en un equipo usado?, ¿cómo se hace el cambio de un refrigerante?, ¿se deben desechar los equipos que trabajan con equipos viejos?, ¿en dónde se puede disponer un refrigerante recuperado de un equipo viejo?, entre otras.

Todas estas preguntas y más se contestarán en los próximos blogs, les recomendamos estar atentos a todas las novedades que publicamos para ustedes.



¿Tienes alguna duda adicional que no hayamos resuelto en esta publicación? ¿Te agradaría algún tema relacionado o que ahonde en un tema similar? Escribe por favor en los comentarios al Final de esta publicación, o si lo prefieres contáctenos en nuestros contactos oficiales de Facebook, Twitter, Google Plus o canal de YouTube.

En Quimobásicos nos interesa mucho tu opinión, ya que nos ayuda a brindarte un mejor servicio, por favor no dudes en hacernos saber cualquier comentario, critica o sugerencia que tengas sobre la empresa, los productos de nuestras marcas Solstice® y Genetron®, o en el blog mismo.

A %d blogueros les gusta esto: