Archivo del sitio

Líneas de Refrigerante

A lo largo de diferentes publicaciones hemos tratado varios conceptos teóricos utilizados en el área de refrigeración y aire acondicionado, también hemos repasado el uso y descripción de otros elementos como son los compresores, condensadores y  dispositivos de control de flujo.

A continuación intentaremos repasar un poco más a profundidad las Líneas de Refrigeración; como su nombre indica, es la sección encargada de la conducción del refrigerante de una parte del sistema a la otra; y como bien sabemos, el refrigerante lo podemos encontrar en estado líquido o vapor dependiendo de la sección en que se encuentre del sistema de refrigeración.

En la mayoría de los casos, las líneas de refrigerante están construidas por tubos de cobre rígido, aunque en algunos países se permite el uso de tubos de cobre flexibles en el extremo de la unidad condensadora y en los accesorios. Sin embargo, las partes de un sistema de refrigeración no se encuentran conectadas una a lado de la otra, más bien se encuentran unidas a través de un sistema de tuberías que reciben el nombre de ‘líneas de refrigerante’ (Ver Figura 1).

Figura 1. Elementos de una Línea de Refrigerante típica.

 

Los sistemas de refrigeración cuentan con 3 líneas principales las cuales te explicamos a detalle a continuación y las cuales puedes observar en el diagrama superior.

 

Líneas de líquido.

En esta línea el refrigerante y el aceite se mezclan adecuadamente. Aún cuando el líquido se mueva lentamente y existan trampas en la línea el aceite nunca quedará atrapado. Debe existir suficiente presión en la línea para evitar que el dispositivo de control de flujo trabaja incorrectamente. Para evitar una caída de presión excesiva se recomienda sub enfriar el líquido.


Líneas de succión.

Existen problemas de diseco, principalmente cuando se utilizan compresores reciprocantes (los que utilizan cilindros y pistones para comprimir). Esta debe tener el diámetro apropiado para compensar la pérdida de presión ocasionada cuando el sistema trabaja a su máxima capacidad. Esta línea debe ser capaz de regresar el aceite del evaporador al compresor cuando el sistema traba a velocidades lentas.

 

Líneas de descarga.

Conocida como línea de gas caliente, es una línea con pocos problemas en los sistemas que tienen el condensador integrado. Esta línea se debe disecar de tal manera que no retenga el aceite del compresor.

Todas las tuberías de que componen las líneas de refrigerante deben ser del tamaño correcto para la cantidad de líquido o vapor a las que fueron disecadas, incluyendo el diámetro correcto, la longitud y el calibre de la tubería. Esto es de vital importancia ya que un mal diseco provoca una pérdida de presión del refrigerante en las líneas, y es perjudicial para el sub enfriamiento de la línea del líquido. Esto ocasiona que la válvula de expansión no realice adecuadamente su trabajo. También existen problemas con el compresor y el evaporador cuando hay bajas presiones en el sistema.

Si tienes comentarios al respecto de la siguiente publicación o si te parece útil te agradecemos que nos comentes en este tu Blog, nuestra página de Facebook o en la cuenta de Twitter que en Quimobásicos ponemos a tu disposición.

¿Tienes dudas adicionales y que no hayamos resuelto en este artículo? Por favor deja un comentario con la duda al final de la publicación, o si gustas puedes contactarnos en nuestras redes sociales de FacebookTwitter  o YouTube.

En Quimobásicos nos interesa mucho saber tu opinión sobre nuestras publicaciones, ya que con ella ayudas a que brindemos un mejor servicio mediante nuestras publicaciones. Por favor no dudes en dejarnos tu comentario, crítica o sugerencia que tengas sobre la empresa, los productos Genetron o el Blog y sus contenidos.

Guía rápida de conceptos de refrigeración: primera parte

Conceptos comunes en la refrigeración y su significado.

Los técnicos en el área de refrigeración y aire acondicionado estamos acostumbrados a trabajar con gran variedad de equipos y herramientas; sin embargo, muchos desconocemos las definiciones o significados de los términos que comúnmente utilizamos en el día a día de nuestro trabajo. En esta publicación nos encargaremos dar una definición a aquellas palabras que escuchamos en nuestro ámbito laboral y de las cuales en algunas ocasiones desconocemos su significado en su totalidad.

Estos son los términos y sus significados:

CALOR. Es la forma de energía generada por el movimiento de las moléculas de un cuerpo. A menor movimiento hay menor cantidad de calor, lo que se traduce en una menor temperatura. Por consiguiente, a mayor movimiento hay mayor calor en el cuerpo, provocando una mayor temperatura.

BTU (British Thermal Unit). Son una unidad inglesa que utilizamos para medir una cantidad de calor. Un BTU se define como la cantidad de calor necesaria para aumentar (o disminuir) en un grado Fahrenheit la temperatura de una libra de agua.

TONELADA DE REFRIGERACION. La tonelada de refrigeración es la capacidad de extracción de carga térmica de un equipo de refrigeración. Se define como la cantidad de calor necesaria para convertir una tonelada de hielo en agua en una hora. Una tonelada de refrigeración equivale a 12,000 BTU.

CALOR LATENTE. Es el calor necesario para producir un cambio de estado en una sustancia sin que exista un cambio de temperatura. El ejemplo por excelencia es el cambio de agua líquida a vapor de agua. Cuando el agua llega a 100°C empieza a convertirse en vapor sin aumentar su temperatura hasta que se termina de evaporar toda el agua.

CALOR SENSIBLE. Es el calor que hace que una sustancia aumente su temperatura. El calor sensible provoca un aumento o disminución de la temperatura mientras que el calor latente produce un cambio de estado (Líquido, vapor o sólido).

CONDENSACIÓN. Es un cambio de estado producido por la extracción de calor (enfriamiento) donde los gases pasan a estado líquido.

EVAPORACIÓN. Cambio de estado producido por la introducción de calor (calentamiento) a un líquido para que pase a vapor.

CONDUCCIÓN. Es la transferencia de calor a través de los sólidos. Ocurre cuando dos cuerpos con diferentes temperaturas están en contacto directo, provocando que el cuerpo con mayor temperatura entregue calor al cuerpo de menor temperatura hasta que su temperatura sea la misma.

CONVECCIÓN. Es la transferencia de calor a través de fluidos y sólidos. Por ejemplo, al usar un horno calentamos el aire que está en la cabina del horno, y el aire caliente se encarga de calentar la comida dentro del horno. La convección es la transferencia entre el aire y la comida.

CONVECCIÓN FORZADA. Es igual a la convección, pero con aceleramos la transferencia de calor con medios externos. Por ejemplo, al usar un abanico estamos forzando a que el aire fluya más rápido y absorba el calor de nuestro cuerpo a mayor velocidad.

RADIACIÓN. Es la transferencia de calor por medio de ondas electromagnéticas. Por ejemplo, los rayos solares poseen ondas electromagnéticas que calientan los objetos que se interponen en su camino. El pavimento en las carreteras es bombardeado por los rayos solares, provocando un aumento en su temperatura por la absorción del calor de las ondas de los rayos.

Estas son sólo algunos de los términos más utilizados en las labores diarias de los técnicos como tu y como yo, ¿conoces algunas más? ¿tienes duda sobre algún otro término? Haz tu sugerencia sobre los términos que crees que debiéramos hablar o sobre temas que consideras deberían ser incluidos en las publicaciones de este blog, ¡estaremos muy felices de recibir tu retroalimentación!

Esperamos que estas definiciones ayuden a ampliar tu comprensión de nuestro ámbito de trabajo, y si conoces a algún joven técnico que deba aprenderse dos o tres de estos términos no dudes en compartir nuestro artículo con el o ellos. 


Si tienes comentarios al respecto de la siguiente entrada o si te parece útil te agradecemos que nos comentes en este tu Blog, nuestra página de Facebook o en la cuenta de Twitter que en Quimobásicos ponemos a tu disposición.

¿Tienes alguna duda adicional que no hayamos resuelto en esta publicación? Por favor escríbela en los comentarios al final de esta publicación, o si lo prefieres, contáctenos en nuestras redes sociales: Facebook, Twitter, Google+ y YouTube.

En Quimobásicos nos interesa mucho tu opinión, ya que nos ayuda a brindarte un mejor servicio, por favor no dudes en hacernos saber cualquier comentario, critica, o sugerencia que tengas sobre la empresa, los productos Genetron, o el blog mismo.

Aires acondicionados: Evitando el bajo rendimiento desde su instalación.

¿Sabías qué una mala instalación puede ser la culpable del bajo rendimiento de tu aire acondicionado? Ponte al día con nosotros.

¿Bajo rendimiento? La eficiencia energética de los equipos HVAC sufre debido a malas instalaciones.
La demanda cada vez mayor por aires acondicionados y bombas de calor eficientes apunta un recorte récord de aproximadamente 30% en el uso de energía residencial eléctrica utilizada para refrigeración y calefacción.

Lo que pocos saben es que estos beneficios que se buscan mediante una mejora en eficiencia energética de equipos de tecnología avanzada pueden ser nulos si el equipo no es instalado adecuadamente.
En un estudio del Instituto Nacional de Estándares y Tecnología (NIST, por sus siglas en inglés) se concluyó que la baja eficiencia de los equipos está directamente relacionada a las malas instalaciones realizadas por técnicos poco capacitados. El reporte del estudio de NIST es el primero de su tipo enfocado en cuantificar perdidas de eficiencia causadas por errores de instalación documentados en estudios de campo.
“Nuestras medidas indican que una mala instalación puede aumentar el uso de energía en el hogar para refrigeración y calefacción a más del 30% de lo que debería de ser”, dijo Piotr Domanski, quien dirige el estudio del rendimiento en HVAC del NIST.
El Ingeniero Domanski, Hugh Henderson de CDH Energy Corp., y el ingeniero mecánico del NIST, Vance Payne realizaron su estudio de medición y modelado de información durante tres años de duración de acuerdo a las inspecciones y otras evidencias de campo que indicaban que, un equipo HVAC “típicamente instalado” podría desperdiciar una cantidad considerable de energía.
Los errores de instalación –o fallas- comúnmente reportados incluyen conductos con fugas, una incorrecta carga de refrigerante, sobredimensionamiento de los sistemas y un flujo de aire restringido.
En encuestas realizadas, la mayoría de los equipos para aire acondicionado evaluados que obtuvieron niveles de una baja eficiencia tenían por lo menos uno o más errores de instalación. “Fue muy común encontrar baja eficiencia en equipos de aire acondicionado, bombas de calor, y equipos relacionados”, explica el Ingeniero Domanski.
“En la mayoría de estudios no se contabilizó aumento de consumo energético como resultado de alguna falla particular o varias fallas, las cuales son difíciles de hacer en el campo”.
Bajo condiciones ambientales controladas, el equipo describió el rendimiento de una bomba de calor mientras operaba con alguno de los siete errores más comunes de instalación. Después de determinar qué tanto afectaba el consumo de energía cada error en el laboratorio, se investigó cómo los mismos errores puedan impactar el uso de energía en dos tipos de casas -uno con sótano, la otra construida sobre un bloque de concreto – y en cinco zonas climáticas diferentes. Esta parte del análisis fue conducido con una herramienta de simulación creada por CDH Energy Corp.
 Los errores más comunes se concentraron en FUGAS EN DUCTOS DE AIRE, mientras que el segundo error más significante que causaba incrementos del uso de energía se dividió en CARGA BAJA DE REFRIGERANTE e INCORRECTO FLUJO DE AIRE en casa (debido a una mala instalación de ductos de aire).
Otros hallazgos del estudio fueron:
  1. En seis de las siete fallas estudiadas, los incrementos asociados en el consumo de energía son similares para las casas con cimientos sólidos y las que tienen sótano. Sin embargo los conductos de aire con fugas instalados en un espacio no acondicionado del ático pueden causar el mayor incremento en el consumo de energía en las casas con cimientos sólidos.
  2. En los climas cálidos y húmedos las fugas en conductos incrementan substancialmente la humedad interior relativa, lo que afecta el grado de confort y por ende la comodidad de las personas.
  3. Como consecuencia de lo anterior los ocupantes o usuarios por lo general le bajarán al termostato para compensar esto, lo que incrementa significativamente el consumo de energía. Con algunas excepciones, las fallas simultáneas tienen efectos aditivos en el consumo de energía.

 

Para Concluir: El correcto dimensionamiento, selección, e instalación de los equipos HVAC de acuerdo a los procedimientos reconocidos por la industria y siguiendo los manuales de los fabricantes de equipos es fundamental para garantizar la eficiencia energética (ahorro de energía).
El informe del NIST constituye la contribución de los Estados Unidos al recientemente finalizadoAnexo 36 de Análisis de Sensibilidad del Mantenimiento de Calidad/Instalación de Calidad de la Agencia Internacional de Energía, y es el primero de su tipo en cuantificar los efectos de una instalación incorrecta.
El informe mencionado sirvió como base científica para establecer los requisitos del reglamento de capacitación para los instaladores de equipos de nuestro vecino país del norte.
Y tu amigo lector, ¿que opinas? esperamos tu contribución y opinión en las dos preguntas de la semana:
  • ¿Estás de acuerdo con que las instalaciones defectuosas afectan la eficiencia?,
  • ¿Te parece adecuado el nivel de profesionalización dentro del mundo HVACR?

Si tienes comentarios al respecto de la siguiente entrada o si te parece útil te agradecemos que nos comentes en este tu Blog, nuestra página de Facebook o en la cuenta de Twitter que en Quimobásicos ponemos a tu disposición.

¿Tienes alguna duda adicional que no hayamos resuelto en esta publicación? Por favor escríbela en los comentarios al final de esta publicación, o si lo prefieres, contáctenos en nuestras redes sociales: Facebook, Twitter, Google+ y YouTube.

En Quimobásicos nos interesa mucho tu opinión, ya que nos ayuda a brindarte un mejor servicio, por favor no dudes en hacernos saber cualquier comentario, critica, o sugerencia que tengas sobre la empresa, los productos Genetron, o el blog mismo.

Quimobásicos Eco® Flush 1233zd ¡La última generación de productos de limpieza para refrigeración ya está disponible en México!

image008

El Quimobásicos Eco® Flush 1233zd presurizado es el más reciente lanzamiento de Quimobásicos en México para los especialistas HVACR. El Quimobásicos Eco© Flush HFO-1233zd presurizado forma parte de una nueva generación de productos de alta tecnología que llegan con la finalidad de sustituir el uso del HCFC-141b en la limpieza de sistemas de refrigeración y aire acondicionado.

El Quimobásicos Eco® Flush 1233zd presurizado es parte de la nueva generación de químicos llamados hidro-fluoro-olefinas (HFOs), este nuevo agente de limpieza es especialmente respetuoso con el medio ambiente gracias a que cuenta con un ultra bajo potencial de calentamiento global (GWP) de “1”, el cual es 99.9% más bajo que el contenido en el HCFC-141b (GWP=725); además de ello el nuevo Quimobásicos Eco® Flush 1233zd presurizado es amigable con nuestro planeta dado que no contribuye al agotamiento de la capa de ozono gracias a que tras su liberación en la atmósfera este se desintegra en 26 días debido a su composición, lo que le otorga un nulo valor de ODP («Potencial de Destrucción del Ozono» de valor ~0).

Dentro de los beneficios generales que tiene el uso del Quimobásicos Eco® Flush 1233zd presurizado pueden enumerarse los siguientes:

Sin título

El Quimobásicos Eco® Flush 1233zd puede ser utilizado en la limpieza de componentes de sistemas de aire acondicionado y refrigeración entre los que se incluyen:

  • Aires acondicionados en aplicaciones comerciales y residenciales
  • Sistemas de refrigeración comercialv
  • Equipos de enfriamiento (Chillers)
  • Refrigeración y aire acondicionado de sistemas de transportes, como automóviles, camiones, autobuses y trenes
  • Refrigeración y Aire Acondicionado de sistemas Aeroespaciales, como aviones y helicópteros

La formulación del Quimobásicos Eco® Flush 1233zd presurizado ha demostrado en la práctica poseer una combinación que le permite ser considerado un solvente de desempeño superior compatible con la gran mayoría de aceites y lubricantes usados en el mercado de la refrigeración y el aire acondicionado; además de ello, al trabajar con el Quimobásicos Eco® Flush 1233zd presurizado los expertos tienen la certeza de tener en sus manos un producto seguro de utilizar puesto que no es inflamable de acuerdo a estándares reconocidos internacionalmente (ASTM E-681).

Acorde a la filosofía de innovación de Quimobásicos, el nuevo producto Quimobásicos Eco® Flush 1233zd presurizado llega a nuestra red de distribuidores para complementar el catálogo de productos HFOs de última generación respetuosos del ambiente y el ozono de nuestro planeta. Este se una la gama de productos HFOs disponibles en México actualmente que cuenta entre sus filas con el Solstice 1234yf y el Solstice N40, cuyos principales enfoques son el aire acondicionado automotriz y la refrigeración comercial, respectivamente.

El Quimobásicos Eco© Flush 1233zd presurizado es un agente de limpieza efectivo para una gran variedad de aceites, lubricantes, sólidos y ácidos entre los que se hallan los siguientes:

  • Aceites de hidrocarburos
  • Aceites minerales
  • Lubricantes y grasas
  • Aceites de silicón
  • Aceites de bombas de vacío
  • Fluidos hidráulicos
  • Aceites y grasas floradas
  • Glicol
  • Acrílicos
  • Fluidos de soldadura líquida

El desempeño de limpieza del Quimobásicos Eco© Flush 1233zd presurizado es prácticamente igual al del HCFC-141b y muy superior a otras alternativas actualmente utilizadas, como lo podemos observar en la siguiente tabla de eficiencia de limpieza:

Sin título2

El Quimobásicos Eco© Flush 1233zd presurizado es además compatible con los elastómeros y polímeros comúnmente utilizados tales como el PET, PTFE, policarbonato, Viton® y Neopreno; además de ello es también compatible con la mayoría de los metales como aluminio, cobre, titanio y aleaciones de magnesio/aluminio.

Recuerda que muy pronto estará disponible en la red de distribuidores de Quimobásicos, por lo que si te interesa te sugerimos contactar a tu distribuidor más cercano (ver distribuidores aquí). También, si te quedan algunas dudas sobre este nuevo desarrollo de Quimobásicos siempre puedes consultar a nuestros expertos; por correo electrónico al email asesor.quimobasicos@cydsa.com o si lo prefieres también puedes consultarnos en las redes sociales oficiales de Quimobásicos: FacebookTwitter; o acercarte a nosotros a través de la sección de contacto en nuestra renovada página web.

 

Definición de conceptos en la refrigeración


Conceptos comunes en la refrigeración y su significado.

Los técnicos en el área de refrigeración y aire acondicionado estamos acostumbrados a trabajar con gran variedad de equipos y herramientas; sin embargo, muchos desconocemos las definiciones o significados de los términos que comúnmente utilizamos en el día a día de nuestro trabajo. En esta publicación nos encargaremos dar una definición a aquellas palabras que escuchamos en nuestro ámbito laboral y de las cuales en algunas ocasiones desconocemos su significado en su totalidad.

Estos son los términos y sus significados:

CALOR. Es la forma de energía generada por el movimiento de las moléculas de un cuerpo. A menor movimiento hay menor cantidad de calor, lo que se traduce en una menor temperatura. Por consiguiente, a mayor movimiento hay mayor calor en el cuerpo, provocando una mayor temperatura.

BTU (British Thermal Unit). Son una unidad inglesa que utilizamos para medir una cantidad de calor. Un BTU se define como la cantidad de calor necesaria para aumentar (o disminuir) en un grado Fahrenheit la temperatura de una libra de agua.

TONELADA DE REFRIGERACION. La tonelada de refrigeración es la capacidad de extracción de carga térmica de un equipo de refrigeración. Se define como la cantidad de calor necesaria para convertir una tonelada de hielo en agua en una hora. Una tonelada de refrigeración equivale a 12,000 BTU.

CALOR LATENTE. Es el calor necesario para producir un cambio de estado en una sustancia sin que exista un cambio de temperatura. El ejemplo por excelencia es el cambio de agua líquida a vapor de agua. Cuando el agua llega a 100°C empieza a convertirse en vapor sin aumentar su temperatura hasta que se termina de evaporar toda el agua.

CALOR SENSIBLE. Es el calor que hace que una sustancia aumente su temperatura. El calor sensible provoca un aumento o disminución de la temperatura mientras que el calor latente produce un cambio de estado (Líquido, vapor o sólido).

CONDENSACIÓN. Es un cambio de estado producido por la extracción de calor (enfriamiento) donde los gases pasan a estado líquido.

EVAPORACIÓN. Cambio de estado producido por la introducción de calor (calentamiento) a un líquido para que pase a vapor.

CONDUCCIÓN. Es la transferencia de calor a través de los sólidos. Ocurre cuando dos cuerpos con diferentes temperaturas están en contacto directo, provocando que el cuerpo con mayor temperatura entregue calor al cuerpo de menor temperatura hasta que su temperatura sea la misma.

CONVECCIÓN. Es la transferencia de calor a través de fluidos y sólidos. Por ejemplo, al usar un horno calentamos el aire que está en la cabina del horno, y el aire caliente se encarga de calentar la comida dentro del horno. La convección es la transferencia entre el aire y la comida.

CONVECCIÓN FORZADA. Es igual a la convección, pero con aceleramos la transferencia de calor con medios externos. Por ejemplo, al usar un abanico estamos forzando a que el aire fluya más rápido y absorba el calor de nuestro cuerpo a mayor velocidad.

RADIACIÓN. Es la transferencia de calor por medio de ondas electromagnéticas. Por ejemplo, los rayos solares poseen ondas electromagnéticas que calientan los objetos que se interponen en su camino. El pavimento en las carreteras es bombardeado por los rayos solares, provocando un aumento en su temperatura por la absorción del calor de las ondas de los rayos.

Lee el resto de esta entrada

A %d blogueros les gusta esto: