La Humedad es uno de los problemas que debemos enfrentar, ya sea en los sistemas de refrigeración, aire acondicionado estacionario y aire acondicionado automotriz. En algunos sistemas o equipos se tiene instalado en las tuberías accesorios como protecciones o sensores, los cuales actuarán para proteger el equipo, como el presostatos de baja presión, accesorio que tiene como función principal de proteger al sistema si tuviera baja presión de succión del refrigerante, evitando así que el equipo siga operando y pueda succionar la humedad al sistema.
(más…)
Archivo de la categoría: Refrigerantes
¿Cuál es la función de la Bomba de Vacío?
Conocer el funcionamiento de estos dispositivos permitirá extraer con éxito los gases y sustancias contaminantes de las tuberías de los equipos de refrigeración y aire acondicionado, lo cual ayudará a reducir la presión del sistema.
Su funcionamiento se define por la velocidad en el bombeo y la cantidad de gas evacuado por unidad de tiempo. Las principales características de estos equipos son la presión mínima de entrada y el tiempo necesario para alcanzar dicha presión. Ambos factores no dependen necesariamente del tipo de bomba, sino de la tubería a evacuar.

Proceso de alto vacío
Lograr un alto vacío en un sistema de refrigeración utilizando una bomba es la única forma de asegurarse de que éste se encuentra completamente seco, sin gases no condensables y fugas. El propósito de hacer el vacío es remover los gases no deseados que crean presión en el sistema como:
- Humedad
- Nitrógeno
- Argón
- Dióxido de carbono presente en el aire que respiramos
Estos gases tienen puntos de ebullición tan bajos que, para cualquier condición de trabajo que el sistema de refrigeración pudiera tener, permanecerán en forma de gas. Asimismo, son incapaces de condensarse dentro del equipo, a diferencia de los refrigerantes. Al no poder realizar esta acción ocupan espacio dentro del condensador, lo cual evita que se libere el calor que transporta el gas refrigerante. Esto tiene un grave impacto en las condiciones de funcionamiento del sistema, lo que provoca:
- Alto consumo de energía
- Alta temperatura en la descarga del compresor, que además hace que los refrigerantes halogenados pierdan su estabilidad térmica
- Alta temperatura en el lubricante hasta que se colapsa
- De cada 10 compresores que fallan en campo, 6 o 7 lo hacen por funcionar en las condiciones antes descritas, en promedio
La humedad también tiene efectos devastadores en el sistema de refrigeración:
- Formación de hielo en la válvula de expansión, en el tubo capilar y en el evaporador
- Corrosión
- Partes internas del compresor se cobrizan
- Daño químico en el aislante del motor del compresor y a otros componentes del sistema
- El lubricante se hidroliza
- Formación de lodos en el sistema
El vacío es un proceso que debe ejecutarse cada vez que tenemos que abrir el sistema de refrigeración o de aire acondicionado. La bomba de vacío elegida para ello tiene que ser de doble estado, para poder llegar a los vacíos adecuados:
- 500 micrones para lubricante alquilbenceno
- 250 micrones para lubricante polioléster
Estas lecturas deben llevarse a cabo con un vacuómetro electrónico y no con el manómetro de baja presión del manifold de servicio.
La mejor selección
Las bombas de vacío se eligen tomando como referencia las toneladas de refrigeración del sistema, a razón de 7 toneladas por cada cfm (pie cúbico por minuto) de la bomba. Es decir, una de 4 cfm tiene la capacidad de deshidratar un sistema de 28 toneladas de refrigeración. El tiempo que toma hacer vacío varía según la altura sobre el nivel del mar a la que se trabaje, la temperatura ambiente a la que está expuesto el sistema, la longitud, qué tan húmedo está el sistema y el diámetro de las mangueras.
Si utilizamos las mangueras de ¼” que tienen los manómetros de servicio estaremos haciendo vacío a una velocidad de 1.7 cfm, aunque nuestra bomba sea de 4 cfm. Si queremos utilizar toda la potencia, entonces es necesario emplear una manguera, cuyo diámetro interior sea idéntico al puerto de aspiración más ancho de la bomba. Además de las anteriores, se puede recurrir a la manguera de ” de goma, o también usar una manguera metálica de acero para hacer vacío.
Para alcanzar un correcto vacío, ASHRAE recomienda evacuar a menos de 1,000 micrones, y una vez aislado, el sistema no debe subir por encima de los 2,500 micrones durante varias horas.
Mantenimiento
Cada bomba de vacío es diferente y cuenta con características especiales; sin embargo, todas necesitan mantenimiento y limpieza. Una que esté constantemente en uso necesitara de mayor atención.
Las inspecciones periódicas se deberán hacer cada bimestre, o por lo menos anualmente, según la clase y el uso de servicio. Mientras la bomba tenga un uso periódico, el mantenimiento será más frecuente. La revisión tendrá que ser completa y deberá incluir un chequeo de las partes que giran y las estacionarias, así como los componentes que se encuentran expuestos a los daños causados por la corrosión.
Es necesario estar al pendiente del nivel de aceite que marca en el cárter, ya que el aumento provocará un mal funcionamiento y la saturación de los filtros coalescentes.
Para verificar que la bomba funcione correctamente, ésta deberá estar en marcha y en vacío. Además, es necesario cambiar el aceite especial cada 1,000 horas o cuando pierda el color original.
En caso de que aspire constantemente vapores ácidos durante su funcionamiento, es importante que el cambio sea más seguido. Si no se realiza constantemente, el aceite corroerá su interior.
Para hacer un lavado interno de la bomba, es indispensable aplicar aceite limpio e introducirlo lentamente por la aspiración. En tanto que, al desarmarla, hay que tomar en cuenta los siguientes puntos:
- La tubería auxiliar debe desconectarse sólo en los puntos en los que sea necesario para retirar una parte, excepto cuando se tenga que desmontar la bomba de la base
- Después de haber desconectado la tubería, debe amarrarse un trapo limpio en los extremos o aberturas del tubo para evitar la entrada de cuerpos extraños
- Emplear siempre un extractor para quitar el acople del eje
- Las camisas del eje poseen roscas para apretarle en sentido contrario a la rotación del eje
Después de desarmar la bomba
Antes de hacer la inspección, hay que limpiar las partes minuciosamente. Los residuos gomosos y espesos pueden removerse a vapor. Los depósitos de sustancias extrañas se eliminan por medio de un chorro de arena, trabajo que se realiza cuidadosamente para que no forme huecos ni dañe las superficies labradas de la máquina.
Reensamblaje
Las tolerancias entre las partes giratorias y las estacionarias son muy pequeñas y debe manipularse con el mayor cuidado para ensamblar adecuadamente sus partes, a fin de conservar estas tolerancias.
El eje debe estar completamente recto y todas las partes absolutamente limpias. Un eje torcido, mugre o lodo en la cara del eje impulsor, o sobre la camisa de un eje puede ser causa de fallas o daños en el futuro, por lo que hay que estar atentos para prevenir o solucionar estos problemas.
Los impulsores, las camisas del espaciador y las del eje constituyen un ensamblaje resbaladizo bastante ajustado, por lo que deberá aplicarse una pasta delgada de aceite al ensamblar las partes del mismo.
Componentes externos
- Carcasa de aluminio liviano y duradero
- Mango con cubierta plástica para evitar deslizamiento
- Puerto de acceso para llenado de aceite
- Válvula de drenado en la parte inferior para fácil limpieza y cambio de aceite
- Base de metal con caucho para asegurar estabilidad
- Aletado para disipar el calor
- Mirilla de cristal para indicar el nivel de aceite
- Válvula de cierre rápido
- Cierre rápido a ¼” de vuelta
- Aísla la bomba del sistema que se está probando por si tiene fugas
- Incluye puertos de ¼”, 3/8” SAE y adaptador 1/2” ACME
- Presente en los modelos: VA-15N, VA-30N, VA-50N, VA-80N, VA-100N y VA-120N
- Puerto de descarga vapor
Componentes Externos Bomba De Vacío
Componentes internos
- Cartucho con rodamiento que reduce las altas temperaturas y extiende la vida útil
- Filtro para prevenir el paso de partículas de aceite
- Partes maquinadas y ensambladas de manera precisa para un vacío profundo
- Tornillos que ensamblan el mecanismo de vacío para ajuste perfecto
- Protector térmico interno
Componentes Internos Bomba De Vacío
Protector Térmico Interno
- Tornillo cruzado
- Cubierta de ventilador
- Ventilador
- Cubierta del motor
- Cojinete
- Tornillo cruzado
- Rotor de motor
- Fuente de alimentación
- Cables de alimentación eléctrica
- Cojinete
- Interruptor centrífugo
- Boquilla aislante
- Cubierta plástica del mango
- Tuerca
- Mango
- Capacitor
- Cubierta de ensamble
- Casco de motor
- Tornillo
- Cubierta de caballete
- Puerto de llenado de aceite
- Sellador
- Puerto de entrada
- Caballete
- Cuerpo de bomba
25-1. Aspa rotatoria
25-2. Aspa rotatoria de resorte
- Tablero del casquillo
- Entrada de vacío
- Cárter de aluminio
- Cristal de visibilidad
- Tapa de aceite
- Sellador
- Tornillo
- Sellador
- Tornillo
- Pies de hule
- Tornillo
- Base
Referencias:
Danahé San Juan y Marco Antonio Dueñas (2018, enero 17). La bomba de vacío. Cero Grados Celsius.
La mayoría de nosotros somos entendemos la utilidad de una tabla de presión-temperatura en nuestro trabajo, sin embargo no todos logramos entenderlas del todo. Es por eso que hoy explicaremos los conceptos de: deslizamiento o glide, punto de rocío y punto de burbuja.
La mayoría de los técnicos en refrigeración y aire acondicionado somos conscientes de la utilidad que tiene una tabla de presión contra la temperatura a la hora de hacer nuestro trabajo, sin embargo, no todos logramos entender la forma correcta de leerlas. Es por eso que hoy nos hemos dado un tiempo para explicar los conceptos: punto de rocío y punto de burbuja, además de las principales diferencias entre los refrigerantes puros y las mezclas.
En los refrigerantes más comunes, la temperatura del serpentín puede ser leída a partir de la escala de temperatura que se muestra en el indicador y calibrador, facilitando de esta forma su medición; sin embargo, no todos los refrigerantes tienen esta función, existen algunos donde la tarea se vuelve más complicada a causa del deslizamiento de temperatura.
Este deslizamiento de temperatura es la que ayudará a determinar la forma que tomará la tabla de presión contra la temperatura. Por esto es necesario revisar de manera inmediata los principales conceptos de este tema:
- El desplazamiento ocurre a partir de que los distintos gases que componen la mezcla del refrigerante poseen una amalgama de temperaturas de ebullición lo cual genera una diferencia entre las composiciones de la fase líquida y la de vapor dentro de un sistema cerrado.
- A causa de esta diferencia en la temperatura, los gases más volubles suelen evaporarse primero haciendo que la temperatura de ebullición de la fase líquida vaya en aumento cada vez que se evapora más el producto.
- La temperatura de evaporación promedio se encuentra entre la temperatura en la que el refrigerante empieza a hervir, hacia la entrada del dispositivo de expansión, y en la que deja de hervir en la parte final del evaporador.
- Un dato más sobre el deslizamiento de temperatura es que es usado para comparar los puntos de ebullición de cada refrigerante obteniendo de esta manera la misma temperatura promedio para el serpentín.
- Otro dato sobre el deslizamiento es que en el condensador sucede lo mismo que en el evaporador, aunque el proceso es revestido a medida que los componentes se condensan a distintas escalas tanto en las entradas como en las salidas.
- Por otro lado, el punto burbuja trata sobre la temperatura donde aparece la primera burbuja de ebullición, mientras que en el punto de rocío ocurre lo contrario: el vapor se empieza a condensar.
Para entender de manera gráfica los conceptos, se muestran a continuación dos diagramas que representan la evaporación/Condensación de un compuesto puro y una mezcla.
Para un componente puro, se puede observar un punto donde su vapor empieza a cambiar a estado líquido, o cuando ese líquido cambia a vapor. Mientras sucede este cambio, la temperatura se mantiene constante. Lo anterior se debe a que la energía requerida para realizar el cambio de una fase a otra se gasta en su totalidad, evitando de esta forma los cambios en la energía interna del compuesto.
Como se puede observar en la gráfica para una mezcla zeotrópica, al ser primero el cambio de estado de los compuestos altamente volátiles, la temperatura durante el proceso va en aumento hasta llegar a la evaporación o condensación en su totalidad.
¿Tienes alguna duda adicional que no hayamos resuelto en esta publicación? Escríbela por favor en los comentarios al final de esta publicación, o si lo prefieres contáctanos en nuestro Facebook, Twitter, Google Plus o canal de YouTube.
En Quimobásicos nos interesa mucho tu opinión, ya que nos ayuda a brindarte un mejor servicio, por favor no dudes en hacernos saber cualquier comentario, critica o sugerencia que tengas sobre la empresa, los productos de nuestras marcas Solstice® y Genetron®, o el blog mismo.
La humedad 💧 es uno de los problemas mas comunes en los sistemas de refrigeración, aire acondicionado estacionario y automotriz, pudiendo provocar numerosos problemas, lee más sobre ello aquí 👉🏻
Razones del porque usar bomba de vacío y vacuómetros en nuestras instalaciones:
La necesidad de los bombas de vacío y los vacuómetros
Como se ha mencionado con anterioridad, la aplicación de vacío a los sistemas de refrigeración es de vital importancia para evitar daños en los equipos y mejorar el funcionamiento del sistema completo.
¿Qué equipo necesito para realizar un correcto vacío al sistema?
Además del equipo de seguridad recomendado, se requiere una bomba de vacío adecuada y un vacuómetro que nos de la lectura del vacío aplicado.
La selección de la bomba de vacío se debe realizar de acuerdo a las toneladas de refrigeración del sistema. El manual de “Buenas prácticas en sistemas de refrigeración y aire acondicionado” recomienda seleccionar la bomba siguiendo la siguiente relación:
Toneladas de refrigeración del sistema ÷ 7 = cfm’s requeridos
Cabe mencionar que es importante revisar las recomendaciones de los fabricantes sobre las capacidades de las bombas de vacío. La relación descrita anteriormente solo sirve como guía general, y el fabricante dará la información real sobre cual bomba se ajusta mejor a cada tipo de sistema de refrigeración.
Una práctica común entre los técnicos es utilizar un compresor fraccionario o el mismo compresor del sistema para realizar el vacío. Las consecuencias de estas prácticas son las siguientes:
No se llega al vacío requerido debido que los compresores están diseñados para aumentar la presión de un gas, no para generar vacío.
- Estos compresores utilizan el mismo refrigerante del sistema para enfriarse. Al hacer vacío se obliga al compresor a trabajar sin su medio de enfriamiento, provocando que la temperatura de las bobinas se eleve y se dañe el compresor.
- Las bobinas del motor generan arcos eléctricos cuando se trabaja el compresor en condiciones de vacío, lo que puede provocar daños al equipo o un corto circuito.
Para asegurar que la bomba llegó al nivel de vacío correcto se requiere el uso de un vacuómetro. Los vacuómetros más comunes son los electrónicos, que tienen la ventaja de ser muy resistentes y de no requerir calibración para empezar a utilizarlos.
¿Por qué es necesario medir la presión de vacío en el sistema en vez de solo contar el tiempo de trabajo de la bomba?
Al bajar la presión en el sistema hacemos que el agua se evapore a temperatura ambiente, permitiendo que la bomba la succione junto con otros vapores para expulsarlos al exterior. Al no hacer la medición correcta de la presión de vacío corremos el riesgo de que la presión baje a tal punto de que el aceite comience a hervir y sea expulsado por la bomba junto con la humedad y otros contaminantes, provocando graves daños al compresor.
Ahora sabemos la importancia de tener el equipo adecuado al realizar el proceso de vacío a los sistemas de refrigeración, y sobre todo debemos recordar usar el equipo de seguridad adecuado al trabajar con los sistemas de refrigeración.
¿Tienes alguna duda adicional que no hayamos resuelto en esta publicación? Por favor escríbela en los comentarios al final de esta publicación, o si lo prefieres, contáctanos en nuestras redes sociales: Facebook, Twitter, Google+ y YouTube.
En Quimobásicos nos interesa mucho tu opinión, ya que nos ayuda a brindarte un mejor servicio, por favor no dudes en hacernos saber cualquier comentario, critica, o sugerencia que tengas sobre la empresa, los productos Genetron, o el blog mismo. Para nosotros tu satisfacción es lo más importante.
Hoy analizamos la importancia de hacer vacío al sistema y los daños que podríamos evitar si realizamos este procedimiento de forma correcta. Lee más aquí 👉🏻
La importancia de hacer un vacío al sistema
¿Por qué debemos hacer vacío a un sistema? ¿Qué tipo de bomba es la mejor? ¿Cuánto tiempo debo dejar que trabaje la bomba de vacío?, estas son sólo algunas de las preguntas que nos hacemos y que a veces no le damos importancia y en muchas ocasiones sólo “se purga la tubería” pensando que se ha hecho un excelente trabajo.
El vacío en el sistema nos da la tranquilidad y seguridad de que el equipo está totalmente deshidratado de algún contaminante que nos pudiera ocasionar un daño mayor, por ejemplo:
1. Alta temperatura de la descarga.
2. Calentamiento excesivo de la válvula de descarga.
3. Formación probable de hielo en el evaporador.
4. Degradación del lubricante.
5. Taponamiento en sistemas que contenga dispositivo del tipo tuvo capilar.
6. Daños severos del compresor.
Estos son sólo algunos posibles daños que podría ocasionar un deficiente proceso de vacío en nuestros sistemas refrigerantes, además en algunos casos, se utiliza compresores del tipo fraccionario, (para refrigeradores domésticos) para hacer esta actividad o aún peor, se utiliza el mismo compresor del sistema para realizar el vacío, lo que resulta en una posible ineficiencia en la operación de nuestro equipo posteriormente.
Como identificar un proceso de “Vacío Correcto”:
Para saber que llegamos al vacío correcto se requiere de un vacuómetro para medir el vacío de manera eficaz. El vacío correcto se alcanza midiendo, no por el tiempo que dejemos la bomba trabajando en el sistema, si no alcanzar la lectura correcta según el tipo de lubricante.
1. Para sistemas que utilizan lubricante Poliolester debe ser de 250 micrones de vacío.
2. Para sistemas que utilizan lubricante mineral o alquilbenceno debe ser de 500 micrones de vacío.
¿Qué tipo de bomba de vacío será correcta? Como lo menciona el manual “Buenas prácticas de refrigeración y aire acondicionado, edición 2006” se debe de escoger la bomba de acuerdo a las toneladas de refrigeración del sistema. Por cada cfm podemos evacuar de una manera efectiva 7 toneladas de refrigeración de un sistema, entonces aplicamos una sencilla fórmula:
(Toneladas de refrigeración del sistema / 7) = CFM requeridos para evacuar el sistema.
Esta práctica es un elemento importante en nuestro proceso de instalación, mantenimiento y reparación de nuestras unidades, por lo que los invitamos a seguir estos consejos para obtener mejores resultados el funcionamiento de los equipos y satisfacción de nuestros clientes.
¿Si tienes aún dudas al respecto de lo visto en está publicación, puedes dejarnos tus preguntas en la caja de comentarios u opiniones al respecto. Te agradeceremos mucho si le das a compartir a este Blog y no olvides consultar también a nuestros expertos a través del correo electrónico: asesor.quimobasicos@cydsa.com. Búscanos en nuestras redes sociales oficiales de Facebook, Twitter, o Google+ y por medio de la nuestra página web.