Archivo del sitio

La Evolución de los Refrigerantes


Durante las últimas décadas, la industria de la refrigeración y el aire acondicionado ha sufrido cambios importantes al utilizar tecnología cada vez más avanzada, logrando un aumento significativo en la eficiencia energética, contribuyendo con esto a los grandes retos de la humanidad para conservar el medio ambiente. Sin embargo, el cambio más importante y menos difundido está relacionado el alma de estos equipos, sin la cual el equipo no tendrá la capacidad de hacer su trabajo; nos referimos a los gases refrigerantes.  

En algunas ocasiones hemos escuchado el término de generación de refrigerantes, y actualmente nos encontramos la 4ª generación. Estas generaciones se definen de acuerdo a la composición química de los gases refrigerantes que componen cada generación.  

Las generaciones de los gases se pueden definir de la siguiente manera:

  • 1ª Generación compuesta por los Clorofluorocarbonos (CFC´s) que contienen cloro, fluor y carbono en su composición química.
  • 2ª Generación compuesta por los Hidroclorofluorocarbonos (HCFC´s) que contienen Hidrogeno, cloro, fluor y carbono en su composición química.
  • 3ª Generación compuesta por los Hidrofluorocarbonos (HFC´s) contienen Hidrogeno, fluor y carbono en su composición.
  • 4ª Generación son las Hidrofluoroolefinas (HFO´s) que Contienen Hidrogeneo, fluor y carbono al igual que los HFC’s, pero son compuestos insaturados (tienen doble enlace).

Si nos preguntamos el porqué de las 4 generaciones de refrigerantes, la respuesta está dada gracias a las regulaciones ambientales que limitan el uso de cloro en los compuestos liberados al ambiente y al impacto de los gases sobre el calentamiento global. Los científicos e ingenieros han estado buscando reemplazar los refrigerantes en base a estos dos factores que deterioran nuestro medio ambiente llamados: agotamiento de la capa de ozono (ODP por sus siglas en ingles) y el potencial de efecto invernadero (GWP por sus siglas en ingles).La primera y segunda generación de refrigerantes se caracterizan por su afectación a los dos factores, principalmente por si alto contenido de cloro en su composición química. La tercera generación ya no ataca la capa de ozono, pero tienen un alto GWP. Por último, la cuarta generación tiene la ventaja, al igual que la tercera generación, de no atacar la capa de ozono además contener un GWP bajo.

Algunas de las preguntas que surgen al conocer la gran variedad de refrigerantes son ¿Cuál refrigerante debo usar? ¿Puedo sustituir un refrigerante por otro e un equipo usado?, ¿Cómo se hace el cambio de refrigerante?, ¿Debemos desechar los equipos que trabajan con equipos viejos?, ¿En dónde se puede disponer un refrigerante recuperado de un equipo viejo?, Etc.

Todas estas preguntas se contestarán en próximos blogs, les recomendamos que estén atentos de todas las novedades que publicamos para ustedes. 

¿Tienes alguna duda adicional que no hayamos resuelto en esta publicación? ¿Te agradaría algún tema relacionado o que ahonde en un tema similar? Escribe por favor en los comentarios al Final de esta publicación, o si lo prefieres contáctenos en nuestros contactos oficiales de Facebook, Twitter, Google Plus o canal de YouTube.

En Quimobásicos nos interesa mucho tu opinión, ya que nos ayuda a brindarte un mejor servicio, por favor no dudes en hacernos saber cualquier comentario, critica o sugerencia que tengas sobre la empresa, los productos de nuestras marcas Solstice® y Genetron®, o en el blog mismo.

Comprendiendo el deslizamiento de temperatura del refrigerante

Importancia del deslizamiento de temperatura y conceptos relacionados.

Todos los técnicos en refrigeración son conscientes de la utilidad que tiene una tabla de presión vs temperatura a la hora de realizar su trabajo, sin embargo, no todos entendemos la forma correcta de leerlas. Para ello explicaremos los conceptos de los famosos puntos de rocío y burbuja, y las diferencias entre los refrigerantes puros y las mezclas.

En los refrigerantes más comunes, la temperatura del serpentín se puede leer a partir de la escala de temperatura que muestra el indicador o calibrador, facilitando su medición, sin embargo, en los otros refrigerantes, la tarea se vuelve un poco más complicada debido al deslizamiento de temperatura.

El deslizamiento de temperatura del refrigerante determinará la forma que tomará la Tabla de Presión vs. Temperatura. Por lo tanto, es necesario revisar de manera rápida los principales conceptos básicos sobre el tema:

  • El deslizamiento ocurre porque los diferentes gases que componen una mezcla de refrigerantes poseen diferentes temperaturas de ebullición, lo que genera que las composiciones de la fase líquida y vapor sean diferentes dentro de un sistema cerrado.
  • Debido a las diferencias de temperatura, los gases más volátiles se evaporan primero, generando que la temperatura de ebullición de la fase líquida vaya aumentando cada vez que se evapora más producto.
  • La temperatura de evaporación promedio se ubica entre la temperatura en la que el refrigerante comienza a hervir a la entrada del dispositivo de expansión y en la que deja de hervir en la parte final del evaporador.
  • El deslizamiento de temperatura promedio es usado para comparar el punto de ebullición en cada refrigerante y con ello obtener la misma temperatura promedio del serpentín.
  • El deslizamiento de temperatura en el condensador ocurre de la misma manera que en el evaporador, pero el proceso es revertido a medida que los componentes se condensan en diferentes escalas en la entrada y la salida.
  • El punto de burbuja es la temperatura donde aparece la primera burbuja de un líquido que comienza a hervir, mientras que el punto de rocío es la temperatura donde aparece la primera gota de líquido de un vapor que se empieza a condensar.

Para entender de manera gráfica los conceptos, se muestran a continuación dos diagramas que representan la evaporación/Condensación de un compuesto puro y una mezcla.

Para un componente puro, solo observamos un punto donde un vapor comienza a cambiar a estado líquido; o un líquido comienza a cambiar a vapor. Mientras ocurre el cambio de estado, la temperatura se mantiene constate. Esto es debido a que la energía requerida para realizar el cambio de fase se consume en su totalidad, evitando cambios en la energía interna del compuesto.

Como podemos observar en la gráfica para una mezcla zeotrópica, al ocurrir primero el cambio de estado de los compuestos más volátiles, la temperatura a lo largo del cambio de fase empieza a va en aumento hasta que se ocurre la evaporación/condensación en su totalidad.

Si tienes comentarios al respecto de esta publicación o si te parece útil te agradecemos que nos comentes en este tu Blog, a nuestro correo electrónico de contacto, a nuestra página de Facebook o en la cuenta de Twitter que en Quimobásicos ponemos a tu disposición.

 

 

COLOCACIÓN DEL BULBO SENSOR EN VÁLVULAS DE EXPANSIÓN

descarga
El presente escrito es una pequeña guía que trata sobre la colocación del bulbo sensor de una válvula de expansión, lo cual si bien puede parecer un trabajo de lo más sencillo no lo es tanto; en esta labor es de suma importancia  su instalación y ubicación correcta, pues estas determinarán el buen funcionamiento de la válvula de expansión.

Debe tenerse un buen contacto entre el bulbo sensor y la tubería de succión; además de ello se recomienda limpiar bien el área de contacto además de sujetar el bulbo con abrazaderas para un buen contacto y funcionamiento. Se recomienda también cubrir con cinta vulcanizada la tubería de succión y el bulbo sensor para así no permitir que temperaturas externas den como resultado un mal funcionamiento de la válvula de expansión.

Posiciones incorrectas del bulbo de succión:

  1. Parte inferior de línea de succión.
  2. En una trampa de succión.
  3. Línea vertical.
  4. Después de la línea de igualación.
  5. El bulbo no debe instalarse sobre soldaduras o uniones de tubería.

Además de estas posiciones se debe evitar colocar el bulbo después de la línea de igualación por el error, pues esto causará que no haga su función de manera adecuada además sujetar el capilar que sale de la válvula de expansión hacia el bulbo para evitar vibración y que pueda perder la carga del gas que se encuentra dentro del bulbo.

Es importante obedecer las indicaciones de cada fabricante de válvula de expansión así como sus especificaciones, en cuanto a temas de capacidad del equipo o la ubicación del bulbo esta dependerá del diámetro de tubería de succión (menor 7/8” o mayor a 7/8”).

No debe instalar el bulbo en la posición inferior ya que el aceite se encuentra en esta zona, lo que pudiese provocar que tengamos un aislamiento del aceite y el bulbo.

Si nuestro artículo de ha parecido de utilidad no dejes de comentarlo tanto en nuestras redes sociales como en la sección de comentarios de este tu blog, ¡gracias por leernos y hasta la próxima publicación!

Untitled-2

Posición del bulbo según su diámetro

A %d blogueros les gusta esto: