Archivo de la categoría: refrigerante

Factores importantes de un refrigerante

En esta publicación vamos a conocer un poco más sobre los gases refrigerantes. Recordemos que el gas refrigerante es el intermediario encargado de absorber calor en los sistemas.

Esto nos lleva a la pregunta, ¿qué es y cómo se mide el calor?

Es una forma de energía, (lo que absorbe y desecha el refrigerante es energía en un sistema de compresión de vapor).

Todo objeto tiene cierta cantidad de energía.

La cantidad de energía es medida en BTUs (British Thermal Unit)

La concentración de energía es comúnmente medida a través de la temperatura.

Tipos de energía: Potencial, Cinética e Interna.

Formas de trasferencia de energía = calor

Flujo de energía = Energía / Tiempo = Potencia

La intensidad de flujo es afectada por la diferencia de temperatura, área de transferencia de calor y tipo der material.

Los tipos de transferencia más comunes son conducción, convección y radiación, y podemos ver cuál es el proceso de cada uno en el siguiente esquema:

Cuando se desee reemplazar el REFRIGERANTE de un sistema es necesario tomar en cuenta los siguientes factores:

CAPACIDAD: ¿El refrigerante tiene la suficiente capacidad para mantener las temperaturas requeridas?

LA EFICIENCIA: ¿Cuánto aporta el refrigerante al total del consumo en el sistema?

FLUJO MÁSICO: Cuando existe un flujo másico alto significa más refrigerante moviéndose en el sistema. Diferentes flujos másicos requieren cambio de TXV o reemplazo de capilar.

GWP (Global-warming potential): En Quimobásicos nos interesa mucho el cuidado al medio ambiente, es por eso que nosotros recomendamos adquirir los refrigerantes con un bajo potencial de calentamiento global (GWP, por sus siglas en ingles), como por ejemplo nuestro GENETRON® 134a ECO.

SOBRECALENTAMIENTO: Se necesita proteger el compresor y asegurar la capacidad del refrigerante.

RETORNO DE ACEITE: El refrigerante debe ser miscible con el aceite, tal que permita el retorno y protección del compresor.

 


Recuerda que si te quedan algunas dudas siempre puedes consultarnos sobre las mejores opciones para el reemplazo del R-22, no dudes en hacérnoslas saber en los comentarios o a nuestro correo electrónico quimobasicos@cydsa.com .

¿Tienes dudas adicionales y que no hayamos resuelto en esta publicación? Por favor deja un comentario con la duda al final de la publicación, o si gustas puedes contactarnos en nuestras redes sociales de FacebookTwitter  o YouTube. En Quimobásicos nos interesa mucho saber tu opinión sobre nuestras publicaciones, ya que con ello nos ayudas a mejorar continuamente. No dudes en dejarnos cualquier comentario, duda o sugerencia que tengas sobre esta publicación.

¿Qué es un minisplit y cuál es su función?

El aire acondicionado minisplit significa “mini-divido” y se refiere a un sistema que consta de dos unidades, que es la unidad interior y la unidad exterior.

Las características principales del aire acondicionado minisplit son las siguientes:

  • Eficiencia en funcionamiento, enfriamiento, espacio y versatilidad.
  • Fácil Instalación.
  • Uso de Refrigerante eficaz (R-22 y R-410A).
  • Diferentes Voltajes de operación según necesidades (110V – 220V).
  • Tipo de control:
    • Modo “Sleep”.
    • Encendido y apagado de modo automático. Movimiento de la rejilla.
    • Diferentes Velocidades del ventilador.
    • Función “energy saver”.
    • Deshumidificación.
    • Inverter (ahorro de energía).

Unidades interiores

La unidad interior y exterior deben de estar conectadas entre sí. Por una parte, debe de haber conexión de tubería de cobre para gas refrigerante y por otra parte debe de haber conexiones eléctricas entre ambas.

Es importante que al escoger el equipo se tome en cuenta que hay fabricantes que incluyen el kit de instalación. Este kit incluye el material necesario para conectar las 2 unidades a una distancia que normalmente es de 4 a 5 metros. En caso de requerir mayor distancia se deberá de considerar el costo del material adicional.

Cuando la unidad interior es instalada en la parte alta de una pared y que se conoce como “Mini Split High Wall”. Y la que es instalada en el techo de la habitación o en la pared y que incluso puede ser recargada en el piso, a ésta unidad se le conoce como Minisplit Piso Techo.

Ilustración 1. Mini Split High Wall

Ilustración 2 Mini Split Piso Tech

Ilustración 2. Mini Split Piso Tech

Unidades Exteriores

La unidad exterior o unidad condensadora es la parte del minisplit que como su nombre lo indica se coloca en el exterior, ya sea en un patio o azotea. Esta unidad está diseñada para estar a la intemperie y de hecho mientras más aire fresco le dé, es mejor. También es recomendable ubicarla donde pueda dar sombra al tiempo que se use el equipo, esto ayudara a mejorar el consumo de energía. Esta unidad es la que se encarga de rechazar el calor hacia el exterior por lo que el aire que sale es caliente, es por eso que no se debe colocar en un lugar encerrado ya que al no haber ventilación el equipo se sobrecalentara y se apagara para evitar ser dañado.

 

También está la unidad exterior o la unidad condensadora, que es la parte del minisplit que se coloca en el exterior, esta unidad se encarga de enviar el calor hacia el exterior por lo que el aire que sale es caliente, por esto no puede estar en lugares cerrados.

Ilustración 3. Unidades Exteriores

 


Si eres técnico te invitamos nuestro evento este jueves 13 de junio en punto de las 15:00 hrs en Guadalajara, Jalisco. ¡Te esperamos!

¿Tienes alguna duda adicional que no hayamos resuelto en esta publicación? Escríbela por favor en los comentarios al final de esta publicación, o si lo prefieres contáctanos en nuestro FacebookTwitterGoogle Plus o canal de YouTube.

En Quimobásicos nos interesa mucho tu opinión, ya que nos ayuda a brindarte un mejor servicio, por favor no dudes en hacernos saber cualquier comentario, critica o sugerencia que tengas sobre la empresa, los productos de nuestras marcas Solstice® y Genetron®, o el blog mismo.

Deslizamiento de temperatura (Glide) ¿Por qué es sumamente importante conocerla? 1ra Entrega

La mayoría de los técnicos en refrigeración y aire acondicionado somos conscientes de la utilidad que tiene una tabla de presión contra la temperatura a la hora de hacer nuestro trabajo, sin embargo, no todos logramos entender la forma correcta de leerlas. Es por eso que hoy nos hemos dado un tiempo para explicar los conceptos: punto de rocío y punto de burbuja, además de las principales diferencias entre los refrigerantes puros y las mezclas.

En los refrigerantes más comunes, la temperatura del serpentín puede ser leída a partir de la escala de temperatura que se muestra en el indicador y calibrador, facilitando de esta forma su medición; sin embargo, no todos los refrigerantes tienen esta función, existen algunos donde la tarea se vuelve más complicada a causa del deslizamiento de temperatura.

Este deslizamiento de temperatura es la que ayudará a determinar la forma que tomará la tabla de presión contra la temperatura. Por esto es necesario revisar de manera inmediata los principales conceptos de este tema:

  • El desplazamiento ocurre a partir de que los distintos gases que componen la mezcla del refrigerante poseen una amalgama de temperaturas de ebullición lo cual genera una diferencia entre las composiciones de la fase líquida y la de vapor dentro de un sistema cerrado.
  • A causa de esta diferencia en la temperatura, los gases más volubles suelen evaporarse primero haciendo que la temperatura de ebullición de la fase líquida vaya en aumento cada vez que se evapora más el producto.
  • La temperatura de evaporación promedio se encuentra entre la temperatura en la que el refrigerante empieza a hervir, hacia la entrada del dispositivo de expansión, y en la que deja de hervir en la parte final del evaporador.
  • Un dato más sobre el deslizamiento de temperatura es que es usado para comparar los puntos de ebullición de cada refrigerante obteniendo de esta manera la misma temperatura promedio para el serpentín.
  • Otro dato sobre el deslizamiento es que en el condensador sucede lo mismo que en el evaporador, aunque el proceso es revestido a medida que los componentes se condensan a distintas escalas tanto en las entradas como en las salidas.
  • Por otro lado, el punto burbuja trata sobre la temperatura donde aparece la primera burbuja de ebullición, mientras que en el punto de rocío ocurre lo contrario: el vapor se empieza a condensar.

 

Para entender de manera gráfica los conceptos, se muestran a continuación dos diagramas que representan la evaporación/Condensación de un compuesto puro y una mezcla.

Para un componente puro, se puede observar un punto donde su vapor empieza a cambiar a estado líquido, o cuando ese líquido cambia a vapor. Mientras sucede este cambio, la temperatura se mantiene constante. Lo anterior se debe a que la energía requerida para realizar el cambio de una fase a otra se gasta en su totalidad, evitando de esta forma los cambios en la energía interna del compuesto.

Como se puede observar en la gráfica para una mezcla zeotrópica, al ser primero el cambio de estado de los compuestos altamente volátiles, la temperatura durante el proceso va en aumento hasta llegar a la evaporación o condensación en su totalidad.


¿Tienes alguna duda adicional que no hayamos resuelto en esta publicación? Escríbela por favor en los comentarios al final de esta publicación, o si lo prefieres contáctanos en nuestro FacebookTwitterGoogle Plus o canal de YouTube.

En Quimobásicos nos interesa mucho tu opinión, ya que nos ayuda a brindarte un mejor servicio, por favor no dudes en hacernos saber cualquier comentario, critica o sugerencia que tengas sobre la empresa, los productos de nuestras marcas Solstice® y Genetron®, o el blog mismo.

Guía para utilizar correctamente Quimobásicos Eco® Flush 1233zd presurizado

Uno de los principales agentes de limpieza de circuitos de refrigeración es el R-141b. No obstante, y debido a la gran demanda de productos más amigables con el ambiente, han salido al mercado productos mucho más sustentables. Un claro ejemplo es el nuevo Quimobásicos Eco® Flush 1233zd presurizado.

Ante estas innovaciones en los productos, los compradores se han preguntado si su modo de empleo es igual o diferente a los productos tradicionales. Por ello es que para aclarar este tema se debe señalar que el Quimobásicos Eco® Flush 1233zd presurizado posee características prácticamente iguales al R-141b, tanto en poder de limpieza como en el modo de uso. A continuación, se mostrará una pequeña guía de uso  del Quimobásicos Eco® Flush 1233zd:

Guía de uso del Quimobásicos Eco® Flush 1233zd presurizado

Situaciones en las que es necesario realizar una limpieza de un sistema de refrigeración y aire acondicionado:

  • Cuando queme el compresor del sistema.
  • Cuando ocurra una inundación de aceite.
  • Cuando se realice un barrido del aceite en el proceso de cambio de refrigerante.

 

Precauciones que se deben tomar al realizar la limpieza:

  • Evitar quitar la soldadura de las tuberías del sistema con refrigerante quemado en su interior.
  • Realizar la limpieza procurando retirar el compresor, el filtro deshidratador y el capilar o VTE.
  • Tener precaución con el refrigerante que saldrá del sistema, ya que éste se puede encontrar a alta presión y con un olor muy fuerte causado por el daño en el embobinado del motor.

Procedimiento para la limpieza del sistema:

  1. Retirar el refrigerante del sistema. Esto se puede hacer por el apéndice del compresor o con una pequeña ruptura en tubería de cobre (tener especial cuidado con los vapores que salen del sistema).

    Ilustración 1 Procedimiento para la limpieza del sistema

  2. Siguiendo las buenas prácticas en refrigeración, desinstalar el compresor y filtro deshidratador.
  3. Al realizar la limpieza, debe asegurarse que el flujo del limpiador vaya a contra flujo, es decir, en sentido contrario del ciclo de refrigeración.
  4. Soldar apéndices en el evaporador y condensador para el lavado a contra flujo.
  • Instalar el apéndice de servicio en la línea de succión del sistema donde se conecta el compresor y extraer el limpiador por el capilar.
  • Instalar el apéndice donde se retiró el filtro deshidratador y extraer el limpiador por la línea de descarga del compresor.

    Ilustración 2 Soldadura de apéndices en el evaporador y condensador para el lavado a contra flujo.

5. Conectar las mangueras de los manómetros de la siguiente manera:

  • La manguera de baja se conecta al contenedor del Quimobásicos Eco® Flush 1233zd presurizado.
  • La manguera de servicio se conecta a la sección del sistema que se va a lavar.
  • La manguera de alta se conecta al tanque de nitrógeno, procurando ajustar la presión a 80 PSI.

6. Abrir la válvula de baja del Manifold para dejar pasar el producto al sistema (recuerde que el contenedor del producto se debe mantener invertido para inyectar únicamente líquido al sistema).

7. Cerrar la válvula de baja y abrir la válvula de alta para introducir el nitrógeno al sistema. El nitrógeno tiene la función de barrer el producto que se introdujo en el paso anterior, junto con la suciedad e impurezas del sistema.

8. Colocar un recipiente a la salida del sistema donde podamos depositar el Quimobásicos Eco® Flush 1233zd que sale de la sección a la que se le realiza la limpieza.

Ilustración 3 Colocación del Quimobásicos Eco Flush

9. Repetir los pasos anteriores hasta que el Quimobásicos Eco® Flush 1233zd introducido al sistema salga limpio.

10. Volver a instalar todos los componentes del sistema, procurando siempre usar un filtro deshidratador nuevo.

 


Recuerda que está disponible en la red de distribuidores de Quimobásicos, por lo que si te interesa te sugerimos contactar a tu distribuidor más cercano (ver distribuidores aquí). También, si te quedan algunas dudas sobre este nuevo desarrollo de Quimobásicos siempre puedes consultar a nuestros expertos; por correo electrónico al email asesor.quimobasicos@cydsa.com o si lo prefieres también puedes consultarnos en las redes sociales oficiales de Quimobásicos: FacebookTwitter; o acercarte a nosotros a través de la sección de contacto en nuestra renovada página web.

¿Tienes alguna duda adicional que no hayamos resuelto en esta publicación? Escríbela por favor en los comentarios al final de esta publicación, o si lo prefieres contáctanos en nuestro FacebookTwitterGoogle Plus o canal de YouTube.

En Quimobásicos nos interesa mucho tu opinión, ya que nos ayuda a brindarte un mejor servicio, por favor no dudes en hacernos saber cualquier comentario, critica o sugerencia que tengas sobre la empresa, los productos de nuestras marcas Solstice® y Genetron®, o el blog mismo.

Dispositivos de control de flujo, 3a Entrega

A lo largo de esta y anteriores publicaciones hemos visto distintos conceptos que nos ayudan a entender de mejor manera el ámbito de la refrigeración. Con el fin de completar la información obtenida y aprendida, les hemos traído esta tercera parte de los conceptos de refrigeración. Hoy nos enfocaremos en definir los diferentes tipos de dispositivos de control de flujo.
Para empezar debemos hacernos primero esta pregunta ¿qué son los dispositivos de control de flujo? Se conocen con este nombre a aquellos componentes del sistema de refrigeración encargados de regular el refrigerante líquido en los evaporadores. Son conocidos por dividir el sistema de refrigeración, de igual manera que lo hace el compresor, en alta y baja presión.

Funcionamiento de dispositivo de control de flujo

Diferentes tipos de dispositivos de control de flujo:

• Tubo capilar: este dispositivo de control es el más básico de todos, se encuentra formado por un pequeño tubo perforado a lo largo de su interior, pero esta perforación es muy pequeña. Dispositivos como este solo se encuentran en equipos que poseen gabinete y en sistemas inundados (un 75% del volumen del equipo es refrigerante). A este dispositivo no se le considera una válvula debido a que no cuenta con un mecanismo de ajuste y por tal motivo no es controlable de otra manera, excepto por la perforación de su interior. Por lo tanto, el tamaño del tuvo debe estar adecuado al sistema específico.

Tubo Capilar

• Válvula termostática de expansión (VTE): este dispositivo es el más usado en los sistemas de refrigeración. Funciona con ayuda de la temperatura y la presión, y tiene una abertura que controla el flujo del refrigerante; mientras una aguja se encarga de controlar la velocidad del flujo mediante un bulbo que siempre contiene líquido. Para esto se mide y compara la temperatura del compresor con la del bulbo, y la aguja abrirá la válvula dependiendo de las necesidades del evaporador. A mayor temperatura del evaporador, mayor será la abertura de la válvula.

Válvula termoeléctrica de expansión

 

Resultado de imagen para Válvula automática de expansión

• Válvula automática de expansión (VAE): se encarga de controlar el flujo del refrigerante de la línea del líquido manteniendo la presión constante en el evaporador. El sistema funciona de forma semejante al del VTE, pero en lugar de controlar la temperatura controla la presión del evaporador. Esta válvula no permitirá que el líquido vaya al compresor a menos que se reduzca la presión del mismo.

Válvula automática de expansión (VAE)

• Válvula termoeléctrica de expansión (VTEE). Este dispositivo consta de dos partes, la válvula que controla el flujo y un sensor eléctrico que mide el calor por medio de termistores. El termistor se define como un conductor eléctrico que cambia su conductividad (capacidad para conducir electricidad) cuando existe un cambio en la temperatura. A mayor temperatura, los termistores conducen mayor electricidad. Cuando el evaporador tiene una temperatura elevada los termistores aumentan el voltaje provocando que el sensor interprete el incremento en el voltaje como un aumento en la temperatura, incitando a que la válvula se abra y permita un mayor flujo de refrigerante.

De esta manera, se podría decir que los dispositivos de control de flujo cargan con la responsabilidad de evitar que el líquido llegue al compresor, evitando así daños en el mismo.

Válvula termoeléctrica de expansión (VTEE)

Si tienes comentarios al respecto de la publicación o si te parece útil te agradecemos que nos comentes en este tu Blog, en nuestra página de Facebook o en la cuenta de Twitter que en Quimobásicos ponemos a tu disposición.

¿Tienes dudas adicionales y que no hayamos resuelto en este artículo? Por favor deja un comentario con la duda al final de la publicación, o si gustas puedes contactarnos en nuestras redes sociales de FacebookTwitter  o YouTube.

En Quimobásicos nos interesa mucho saber tu opinión sobre nuestras publicaciones, ya que con ello nos ayudas a mejorar continuamente. No dudes en dejarnos tu comentario, crítica o sugerencia que tengas sobre la empresa, los productos Genetron o sobre nuestros contenidos.

 

A %d blogueros les gusta esto: