Archivo de la categoría: conceptos

Conceptos Básicos de Refrigeración y Aire Acondicionado. 3ª Entrega: Dispositivos de control de flujo


En previas publicaciones hemos visto algunos de los conceptos esenciales para entender el amplio ámbito de la refrigeración. Con el fin de complementar la información que ya hemos aprendido, les traemos esta tercera parte de conceptos de refrigeración. Cabe recalcar que en esta sección nos centraremos definir los diferentes tipos de dispositivos de control de flujo.

¿Qué son los dispositivos de control de flujo? Son aquellos componentes del sistema de refrigeración encargados de regular el flujo del refrigerante líquido en los evaporadores. Son conocidos por dividir el sistema de refrigeración, al igual que el compresor, en la parte de alta presión y de baja presión.

Ilustración 1. Funcionamiento de dispositivo de control de flujo.

Diferentes tipos de dispositivos de control de flujo:

• Tubo capilar: este dispositivo de control es el más básico de todos, se encuentra formado por un pequeño tubo perforado a lo largo de su interior, pero esta perforación es muy pequeña. Dispositivos como este solo se encuentran en equipos que poseen gabinete y en sistemas inundados (un 75% del volumen del equipo es refrigerante). A este dispositivo no se le considera una válvula debido a que no cuenta con un mecanismo de ajuste y por tal motivo no es controlable de otra manera, excepto por la perforación de su interior. Por lo tanto, el tamaño del tuvo debe estar adecuado al sistema específico.

Ilustración 2. Tubo Capilar.

• Válvula termostática de expansión (VTE): este dispositivo es el más usado en los sistemas de refrigeración. Funciona con ayuda de la temperatura y la presión, y tiene una abertura que controla el flujo del refrigerante; mientras una aguja se encarga de controlar la velocidad del flujo mediante un bulbo que siempre contiene líquido. Para esto se mide y compara la temperatura del compresor con la del bulbo, y la aguja abrirá la válvula dependiendo de las necesidades del evaporador. A mayor temperatura del evaporador, mayor será la abertura de la válvula.

Ilustración 3. Válvula termoeléctrica de expansión.

Resultado de imagen para Válvula automática de expansión

Ilustración 4. Válvula automática de expansión.

• Válvula automática de expansión (VAE): se encarga de controlar el flujo del refrigerante de la línea del líquido manteniendo la presión constante en el evaporador. El sistema funciona de forma semejante al del VTE, pero en lugar de controlar la temperatura controla la presión del evaporador. Esta válvula no permitirá que el líquido vaya al compresor a menos que se reduzca la presión del mismo.

• Válvula termoeléctrica de expansión (VTEE). Este dispositivo consta de dos partes, la válvula que controla el flujo y un sensor eléctrico que mide el calor por medio de termistores. El termistor se define como un conductor eléctrico que cambia su conductividad (capacidad para conducir electricidad) cuando existe un cambio en la temperatura. A mayor temperatura, los termistores conducen mayor electricidad. Cuando el evaporador tiene una temperatura elevada los termistores aumentan el voltaje provocando que el sensor interprete el incremento en el voltaje como un aumento en la temperatura, incitando a que la válvula se abra y permita un mayor flujo de refrigerante.

De esta manera, se podría decir que los dispositivos de control de flujo cargan con la responsabilidad de evitar que el líquido llegue al compresor, evitando así daños en el mismo.

Ilustración 5. Válvula termoeléctrica de expansión (VTEE).

Si tienes comentarios al respecto de la publicación o si te parece útil te agradecemos que nos comentes en este tu Blog, en nuestra página de Facebook o en la cuenta de Twitter que en Quimobásicos ponemos a tu disposición.

¿Tienes dudas adicionales y que no hayamos resuelto en este artículo? Por favor deja un comentario con la duda al final de la publicación, o si gustas puedes contactarnos en nuestras redes sociales de FacebookTwitter  o YouTube.

En Quimobásicos nos interesa mucho saber tu opinión sobre nuestras publicaciones, ya que con ello nos ayudas a mejorar continuamente. No dudes en dejarnos tu comentario, crítica o sugerencia que tengas sobre la empresa, los productos Genetron o sobre nuestros contenidos.

Conceptos sobre presión y humedad | 1era Entrega


La publicación de esta semana tiene por tema hacer un repaso de algunos de los conceptos básicos del área de Refrigeración y Aire Acondicionado que son parte del día a día en nuestras labores; en esta ocasión repasaremos algunos términos esenciales en la labor del técnico en refrigeración o profesional en aire acondicionado.

Esta es la primera de una serie de tres recopilaciones de conceptos, en esta publicación nos enfocaremos en algunos conceptos relacionados a la presión y la humedad.

HUMEDAD.

La cantidad de agua que se encuentra dispersa en el ambiente (aire) se le conoce como humedad. Cuando el aire llega a contener la máxima cantidad de agua permisible, es cuando se genera el concepto de saturación de agua en el aire. Se le conoce dos formas distintas de humedad en nuestro ambiente laboral, la humedad relativa y la humedad específica.

Ilustración 1: Humedad relativa y específica

HUMEDAD ESPECÍFICA.

Se define como la cantidad de masa (peso) de vapor de agua disuelto en el aire (humedad). Se expresa en unidades de libras de vapor de agua por libra de aire seco (aire con 0% de humedad)

HUMEDAD RELATIVA.

Es conocida como el porcentaje del grado de saturación de vapor de agua en el aire. Se expresa en una escala de 0 a 100%. Por ejemplo, se dice que cuando la humedad relativa es 0%, es porque no existe nada de agua disuelta en el aire. Un valor de humedad relativa de 50% nos indica que el aire a aceptado la mitad de la cantidad máxima de agua que puede absorber. Por último decimos que la humedad relativa del 100% ocurre cuando se llega a la saturación de agua en el aire.

SATURACIÓN.

Se le conoce como saturación a la concentración máxima de un compuesto disuelto en otro. Es decir, que ya no puede agregar ni un solo gramo del compuesto que se disuelve en el otro. Por ejemplo, cuando el ambiente (aire) ya no puede absorber más agua (humedad) es que el aire está saturado de agua.

PRESIÓN ATMOSFÉRICA.

En la presión que ejerce el aire que existe en el ambiente a la superficie de la tierra. Mientras más cerca nos encontremos del nivel del mar, va a existir más aire sobre nosotros, lo que genera una presión mayor. Si nos encontramos a una altura muy por encima del nivel del mar, tenemos menos aire sobre nosotros generando una menor presión atmosférica.

TRANSFERENCIA DE CALOR.

La transferencia de calor es el proceso físico donde la energía interna de un cuerpo (que podemos medir como la temperatura) se mueve a un cuerpo con menor energía que el anterior. Por ejemplo, si tenemos un cuerpo a 100°C y lo sumergimos en una gran cantidad de agua fría, la energía del cuerpo caliente se transferirá al agua fría generando que la temperatura del cuerpo caliente disminuya. Es importante mencionar que la energía siempre fluye del cuerpo más caliente al más frío.

PUNTO DE ROCÍO.

El punto de rocío ocurre en el momento en que se enfría el aire saturado de humedad, disminuyendo su capacidad de absorción de vapor de agua. Esto genera que el agua que ya no puede estar disuelta en aire se comience a condensar, generado unas pequeñas gotas de agua.

Ilustración 2: ejemplo de punto de rocío

REFRIGERANTE.

Se le conoce como refrigerante a las sustancias con bajos puntos de ebullición (menores a los -15°C) que se utilizan como medios para robar el calor del ambiente y desplazarlo a otra zona.

Esperamos que estas definiciones les ayuden a complementar sus conocimientos en el ámbito de la refrigeración.


¿Tienes dudas adicionales y que no hayamos resuelto en esta publicación? Por favor deja un comentario con la duda al final de la publicación, o si gustas puedes contactarnos en nuestras redes sociales de FacebookTwitter  o YouTube. En Quimobásicos nos interesa mucho saber tu opinión sobre nuestras publicaciones, ya que con ello nos ayudas a mejorar continuamente. No dudes en dejarnos cualquier comentario, duda o sugerencia que tengas sobre esta publicación.

Nuevas regulaciones de identificación y comunicación de peligros y riesgos por sustancias químicas

En las siguientes líneas te contaremos los elementos básicos sobre la nueva NOM-018-STPS-2015 que rige la identificación y comunicación de peligros y riesgos por sustancias químicas en las áreas de trabajo.

Primero que todo comenzaremos explicando que es una Norma Oficial Mexicana, ésta es una regulación obligatoria puesta por las dependencias competentes. La finalidad de una NOM es otorgar confianza a los consumidores de que el producto que adquieren es confiable; ampliar las opciones al consumidor y evitar que el uso o consumo del producto sea un riesgo para la salud.

La NOM-018-STPS-2015 entró en vigor el 9 de octubre del 2018 y su objetivo principal consiste en determinar los requisitos necesarios en los centros de trabajo del sistema armonizado de identificación y comunicación de los peligros y riesgos por sustancias químicas, de esta manera se previenen daños al personal del área y a los que actúan en casos de emergencia.

La NOM cuenta con una validez oficial en todo México y se aplica a todos los centros de trabajo donde es requisito trabajar con sustancias químicas de alto riesgo. Esta norma, a pesar de proteger contra químicos peligrosos, no aplica para todos los productos encontrando así que la NOM no protege contra: farmacéuticos, aditivos alimenticios, cosméticos, residuos de plaguicidas en alimentos y otros residuos peligrosos.

A continuación se mencionan algunas de las obligaciones que los trabajadores tienen bajo la NOM-018-STPS-2015:

  • Apoyar en la implementación del sistema armonizado de identificación y comunicación de peligros de sustancias químicas peligrosas y mezclas en el centro de trabajo.
  • Apoyo en los cursos y capacitaciones brindados por el patrón.
  • Conocer la información existente en las hojas de datos de seguridad, así como saber señalar las sustancias químicas peligrosas y las mezclan con las que se trabaja en el centro de trabajo.
  • Notificar al patrón la falta de hojas de datos de seguridad, de señalamientos de depósitos, recipientes o áreas de almacenamiento de las sustancias químicas peligrosas y de las mezclas con las que se trabaje en el centro de trabajo.

Pictogramas

Con estos nuevos lineamientos, se deberán usar los pictogramas que correspondan a los peligros y categorías de las sustancias químicas o mezclas como se muestra a continuación:

Figura 1. Pictogramas de Seguridad

Indicadores de peligro y consejos de prudencia

Tanto la señalización como las hojas de datos de seguridad empleadas en los centros de trabajo debe de incluir los peligros físicos, los códigos de las frases, las indicaciones de los peligros físicos, la clase o tipo de peligro y las categorías de peligro tal y como se muestran en nuestras hojas de seguridad disponibles en la página web de Quimobásicos; te invitamos a que las conozcas y descargues dando click en el siguiente enlace: Hojas de Seguridad.

En Quimobásicos sabemos que es de vital importancia el cumplimiento de las normas y regulaciones oficiales (la  NOM-018-STPS-2015 incluída). Por esto y más los empaques y envases de los productos que manejamos se encuentran señalados con los pictogramas para identificar peligros y riesgos por sustancias químicas peligrosas en los centros de trabajo, y esto mucho antes de la fecha de entrada en vigor de la Norma Oficial Mexicana. Para saber más acerca de esta norma puedes consultar la información directamente en la Secretaría del Trabajo dando click AQUÍ.

En las siguientes ilustraciones puedes observar las aplicaciones detalladas de los Códigos de Peligro (Figura 2), Consejos de Prudencia (Figura 2) y Pictogramas (Figura 3):

 

Figura 2. Códigos de Peligro y Consejos de Prudencia en Lata de 1kg de Genetron 134a


Figura 3. Pictogramas en Caja de Genetron 134a

Por tu propia seguridad y la de los tuyos te sugerimos confiar únicamente en productos que cumplan con estas regulaciones en pro de asegurar tu bienestar y el de tu negocio.

Si tienes comentarios al respecto de la publicación o si te parece útil te agradecemos que nos comentes en este tu Blog, en nuestra página de Facebook o en la cuenta de Twitter que en Quimobásicos ponemos a tu disposición.

¿Tienes dudas adicionales y que no hayamos resuelto en este artículo? Por favor deja un comentario con la duda al final de la publicación, o si gustas puedes contactarnos en nuestras redes sociales de FacebookTwitter  o YouTube.

En Quimobásicos nos interesa mucho saber tu opinión sobre nuestras publicaciones, ya que con ello nos ayudas a mejorar continuamente. No dudes en dejarnos tu comentario, crítica o sugerencia que tengas sobre la empresa, los productos Genetron o sobre nuestros contenidos.

¿Cómo se destruye la capa de ozono?

La capa de ozono es la capa superficial que protege a la tierra de la radiación producida por los rayos ultravioleta (UVB) que emite el sol, actuando como un filtro, está compuesta por moléculas de ozono esparcidas en la estratosfera a una altura de 50 km. a nivel del mar (Ilustración 1. Capa de Ozono).

Ilustración 1. Capa de Ozono

En los últimos años esta capa se ha visto reducida considerablemente, debido en parte importante a la emisión de gases contaminantes usados por el hombre (Sustancias Agotadoras de la Capa de Ozono o SAOs), produciendo la disminución de la concentración de ozono en la atmósfera terrestre. A éste fenómeno se lo llama comúnmente “agujero de ozono”, y es un fenómeno el cual se halla afectando gravemente la salud de los seres humanos, todos los seres vivos del planeta y el medio ambiente.

En los años 70, científicos descubrieron que las SAOs (Sustancias Agotadoras de la Capa de Ozono) liberadas por el hombre en la atmósfera, dañan gravemente la capa de ozono, disminuyendo la concentración de ozono de la Antártida en aproximadamente un 70 % entre los años 70 y 90 comparada con su nivel de concentración normal de años previos.

Esto es producto de que la liberación de estas sustancias rompe el débil equilibrio entre la producción natural de moléculas de ozono y su descomposición, eliminando más rápidamente las mismas de lo que son capaces de reproducirse.

 

Diferencia entre agujero de ozono y cambio climático.

La reducción de ozono en la atmósfera o agujero de ozono, no es lo mismo que cambio climático o calentamiento global. Este último es producido por la emisión de gases de efecto invernadero que atrapan el calor emanado por la tierra en la atmósfera e impidiendo que se diluya, lo que hace que la atmósfera aumente su temperatura.

Ilustración 2. El efecto invernadero

Los gases que producen el efecto invernadero son el dióxido de carbono, el metano, CFCs, HCFCs y halones. El efecto invernadero de éstos gases se mide en PCG (Potencial de Calentamiento Global de la Atmósfera), que es la contribución de cada uno de éstos gases en el efecto invernadero, relativa la del dióxido de carbono cuyo PCG es de 1.

Los efectos del calentamiento global producen un impacto que incluye, aumento en el nivel del mar, efectos impredecibles en los ecosistemas y aumento en los desastres naturales. Algunas SAO también contribuyen a aumentar el efecto invernadero (Ilustración 2. Efecto Invernadero).

 

¿Qué es una sustancia que agota la capa de ozono?

En el marco del Protocolo de Montreal, se identificó un número de sustancias que agotan la capa de ozono (SAOs), desde ese momento se ha tratado de controlar la producción y emisión de las mismas.

Las SAOs tienen un enorme poder destructivo ya que algunas de ellas pueden permanecer en el ambiente entre 100 y 400 años. Estas reaccionan con las moléculas de ozono en una reacción en fotoquímica en cadena, una vez que destruye una molécula de ozono está lista para destruir más, por consiguiente puede destruir miles de moléculas de ozono.

Las SAO incluyen básicamente, hidrocarburos, clorinados, fluorinados y brominados entre ellas:

  • Clorofluorocarbonos (CFC)
  • Hidroclorofluorocarbonos (HCFC)
  • Halones
  • Hidrobromofluorocarbonos (HBFC)
  • Bromoclorometano
  • Metilcloroformo
  • Tetracloruro de carbono, y
  • Bromuro de metilo

La capacidad que estas sustancias químicas tienen para agotar la capa de ozono es medida por el PAO (Potencial de Agotamiento del Ozono). En esta escala a cada sustancia se le asigna un PAO relativo al CFC-11, cuyo PAO por definición tiene el valor 1.

Las SAOs se liberan a la atmósfera de las siguientes maneras:

  • Uso común de solventes de limpieza, equipos para combatir el fuego, pinturas y aerosoles.
  • Despresurización y fuga durante el mantenimiento de los sistemas de refrigeración y aire acondicionado.
  • Uso del bromuro de metilo en la fumigación del suelo.
  • Eliminación de productos y equipos como espumas y refrigeradores.
  • Circuitos de refrigeración que presentan fugas.

 

Las SAOs una vez liberadas alcanzarán la atmósfera, diluyéndose en el aire y pudiendo alcanzar la estratósfera debido a su larga vida, afectando de esta manera la capa de ozono.

Los avances tecnológicos de avanzada permiten que Quimobásicos participe en el mercado Mexicano con productos de última generación que contribuyen a la conservación y correcto desarrollo de la vida en el planeta con índices prácticamente nulos de PAO y PCG, entre stos productos de última generación pueden contabilizarse al Nuevo Agente de Limpieza Eco FLush HFO-1233zd y al refrigerante de uso automotriz Solstice HFO-1234yf (Ilustración 3).

Ilustración 3. Productos de última Generación Quimobásicos Eco FLush HFO-1233zd y Solstice HFO-1234yf

Si tienes comentarios al respecto de la publicación o si te parece útil te agradecemos que nos comentes en este tu Blog, en nuestra página de Facebook o en la cuenta de Twitter que en Quimobásicos ponemos a tu disposición para comunicación directa, también puedes consultar con el Distribuidor Oficial más cercano a ti dando clic aquí.

¿Tienes dudas adicionales y que no hayamos resuelto en este artículo? Por favor deja un comentario con la duda al final de la publicación, o si gustas puedes contactarnos en nuestras redes sociales de FacebookTwitter  o YouTube.

En Quimobásicos nos interesa mucho saber tu opinión sobre nuestras publicaciones, ya que con ello nos ayudas a mejorar continuamente. No dudes en dejarnos tu comentario, crítica o sugerencia que tengas sobre la empresa, los productos Genetron o sobre nuestros contenidos.

¿Cuál es la temperatura ideal para dormir bien?

 

La temperatura externa que el cuerpo necesita para dormir bien es aproximadamente 21ºC; por encima o por debajo de estos grados ya no se duerme bien.

Con el aumento de la temperatura ambiente, se produce una hiperactivación del metabolismo motivada por el esfuerzo corporal de mantener la temperatura interior acorde con la exterior, lo que tiene consecuencias cerebrales», asegura el doctor José Antonio López Rodríguez, vicepresidente de la Asociación Española de Psiquiatría Privada (ASEPP). Al estar más activo, aparecen síntomas como irritación, nerviosismo y los temidos trastornos del sueño.

Ilustración 1. Dormir con una temperatura ideal favorece a la salud.

 

Esta hiperactivación metabólica, que a su vez produce una activación cerebral, es la que nos impide dormir bien, dando lugar a un incremento del trastorno del sueño y la ansiedad», explica el doctor. «Ambos trastornos, ansiedad y falta de sueño, se complementan y se potencian el uno al otro, dando lugar a una espiral que es necesario frenar a tiempo para evitar posibles crisis.

No dormir engorda, aumenta tus niveles de estrés y por tanto te expone a contraer más enfermedades. Uno de los factores que pueden ayudarte a conciliar el suelo es la temperatura de tu dormitorio.

Ya sabes de sobra que cuando hace mucho calor no se puede dormir. Por encima de 26 grados el mecanismo de refrigeración de tu cuerpo se pone en marcha e interfiere con el sueño. Aunque lo mismo ocurre si hace demasiado frío. Por debajo de 12 grados tu cuerpo tiene que aumentar la actividad para calentarse y te despiertas en medio de la noche. ¿Cuál es la temperatura adecuada para dormir a pierna suelta?

La respuesta hay que buscarla en las variaciones de la temperatura de nuestro cuerpo. A mediodía alcanza el máximo. A medida que avanza la tarde nuestra temperatura desciende, desencadenando el sueño. La temperatura mínima está sobre las 5 de la madrugada, antes de despertarnos. En general, bajar la temperatura del cuerpo ayuda a dormir.

La temperatura correcta varía de una persona a otra, es diferente en hombres y mujeres, y es uno de los principales problemas que hay que negociar cuando se vive en pareja. La temperatura ideal de la habitación en la que duermes está entre los 15 grados y los 22. Más calor o más frío y alguien tendrá problemas para dormir.

Ilustración 2. Temperatura correcta varía de una persona a otra, es diferente en hombres y mujeres.

Si es necesario utiliza edredones individuales. Los pies fríos pueden impedir que duermas bien. Si ese es el problema, ponte calcetines. También puedes usar mantas eléctricas, botellas de agua caliente o al revés, paquetes de gel frío.

Si tienes comentarios al respecto de la publicación o si te parece útil te agradecemos que nos comentes en este tu Blog, en nuestra página de Facebook o en la cuenta de Twitter que en Quimobásicos ponemos a tu disposición.

¿Tienes dudas adicionales y que no hayamos resuelto en este artículo? Por favor deja un comentario con la duda al final de la publicación, o si gustas puedes contactarnos en nuestras redes sociales de FacebookTwitter  o YouTube.

En Quimobásicos nos interesa mucho saber tu opinión sobre nuestras publicaciones, ya que con ello nos ayudas a mejorar continuamente. No dudes en dejarnos tu comentario, crítica o sugerencia que tengas sobre la empresa, los productos Genetron o sobre nuestros contenidos.

A %d blogueros les gusta esto: