Archivo del sitio

Capacitaciones Febrero

Los expertos técnicos de Quimobásicos están listos para visitar más ciudades de la república para dar sus charlas gratuitas sobre distintos e importantes temas relacionados a los Gases Refrigerantes.


El
viernes 9 de febrero visitaremos EQUIPSA, Los Cabos; el horario es a las 09:00 horas. El local está ubicado en Leona Vicario SN entre 5 de febrero y Reforma, Plaza San Ramon Local 1 Col. Ejidal Cabo San Lucas. Revisaremos el tema de 4ta Generación de Refrigerantes. 

El sábado 10 de febrero a las 17:00 horas estaremos en APRAA en Mexicali, B.C., en esta ocasión la plática será en CECAT # 4. Av. Queretaro 2030 Col. Baja California, Mexicali. Ahí veremos el tema de 4ta Generación de Refrigerantes

¡TE ESPERAMOS!


¡No te lo puedes perder!

 

Este es el calendario detallado del mes de Febrero:

FECHA DISTRIB. DIRECCIÓN MÁS INFORMES LUGAR TEMA
9 de
FEB.
EQUIPSA
Leona Vicario SN entre 5 de febrero y reforma. Plaza San Ramon Local 1 Col. Ejidal Cabo San Lucas, BCS

Ana Contreras
Cel: 01 624 105 1229

Los Cabos,
BCS.
4TA GENERACIÓN REFRIGERANTES
10 de
FEB.
APRAA
CECAT # 4. Av. Queretaro 2030 Col. Baja California.Mexicali

Miguel Sanchez
T. 686 510 6009

Mexicali,
BC.
4TA GENERACIÓN REFRIGERANTES

Y tú, ¿sabes cómo reemplazar un capacitor?


¿Qué es un Condensador (Capacitor)?

Capacitor de Arranque

Un condensador, coloquialmente conocido como capacitor, es un dispositivo eléctrico que, en su forma más básica, está compuesto por dos placas conductoras separadas por un material dieléctrico o por vacío, conectadas a una fuente de corriente directa que genera una diferencia de potencial positiva en una placa y negativa en la otra, anulando la variación de la carga total.

Capacitor Permanente

Gracias a su estructura, los condensadores son capaces de almacenar los electrones, dentro un  campo eléctrico, necesarios para abastecer en su totalidad los picos de energía consumidos por los componentes del sistema de refrigeración (principalmente el motor). Se puede decir que los capacitores dan el impulso extra al motor para que comience a funcionar (condensador de arranque) o para evitar problemas de calentamiento (condensador permanente).

En los sistemas de refrigeración suelen utilizarse dos tipos de capacitores: Los de arranque y los permanentes. A diferencia del capacitor de arranque que se utiliza vencer la fuerza opositora que se genera al arrancar, la función del capacitor permanente es reforzar al motor, mejorar el factor de potencia, reducir el consumo de corriente y, en consecuencia, disminuir la temperatura del motor. Los permanentes están diseñados para trabajar continuamente siempre que el motor esté encendido.

Equipo de Seguridad

Para diferenciar uno del otro podemos revisar la capacidad en microfaradios de cada uno. Los de arranque suelen tener valores mucho más altos que los permanentes. Otra forma de diferenciarlos es a través del color; los de arranque vienen en cilindros de color negro, mientras que los permanentes son de color blanco o gris claro.

El mal funcionamiento de los capacitores es uno de los problemas más comunes que ocurren a los sistemas de refrigeración, para ello vamos a dar algunos consejos, enfocados para técnicos primerizos, que les pueden ayudar a determinar si un necesita ser reemplazado o no.

¿Cómo reemplazar un capacitor?

Antes que nada, sugerimos revisar el manual del fabricante del equipos y en caso de que no seas experto en la materia, consultes con un técnico especializado quien deberá asesorarte en cuanto al procedimiento de la mejor manera.

El proceso es muy sencillo, para ello requerirás la siguiente herramienta:

  • Dos destornilladores
  • Un medidor de volts y ohms analógico

Adicionalmente te recordamos que deberás seguir las siguientes reglas de seguridad si decides seguir esta recomendación:

  • Usa anteojos de seguridad cuando trabajes con el condensador para garantizar tu seguridad.
  • Se cuidadoso cuando trabajes con piezas de alta tensión, como es el caso de un capacitor de arranque.

Procedimiento:

  1. Para evitar accidentes, debes desconectar todos los cables eléctricos que estén conectados al motor.
  2. Se deben retirar los dos tornillos de la pieza que cubre el condensador de arranque, posteriormente deberás tocar las dos terminales de metal del condensador al mismo tiempo con un destornillador de mango aislado. Con esto te asegurarás de que el condensador no haya quedado cargado.
  3. Después de ajustar el medidor analógico a ohms, conecta las dos extensiones del medidor juntas, y coloca en cero el medidor moviendo la rueda.
  4.  Toca con la extensión positiva el terminal de metal negativo del condensador y con la extensión negativa el positivo. Observarás que la aguja del medidor reaccionará. Un condensador en buen estado supera el metro y luego marca resistencia infinita, si el condensador se encuentra en malas condiciones se quedará en el lado opuesto, es decir que no producirá una lectura infinita.
  5.  Por último, tienes que verificar si hay signos de desgaste físico como protuberancias o fugas. Y en caso necesario deberás de reemplazarlo.

Si tienes comentarios al respecto de esta publicación o si te ha parecido útil te agradecemos que la compartas o que nos comentes en este tu Blog;  puedes también consultar a nuestros expertos por correo electrónico al email asesor.quimobasicos@cydsa.com o si lo prefieres también puedes consultarnos en las redes sociales oficiales de Quimobásicos: FacebookTwitter, o Google+; también acercarte a nosotros a través de la sección de contacto en nuestra renovada página web.

Y tu, ¿sabes como es que funciona la bomba de calor? ¿Sabias que ahorra energía? Lee más aqui…

Ahora que se acercan las bajas temperaturas nos hicieron plantearnos el explicar el funcionamiento básico de las bombas de calor en equipos de aire acondicionado.

¿Tu sabes qué es una bomba de calor? Es un mecanismo relativamente sencillo y muy ingenioso a la vez, una bomba de calor es un sistema que “genera” calor sin la necesidad de realmente generar calor. Tal vez esto suene como algo que no tiene sentido, pero es muy simple:

Existe calor en el aire de todos los lugares. Cuando la temperatura es alta, la cantidad de calor en el aire es mucha, cuando la temperatura es baja, la cantidad de calor es poca. Pero siempre hay calor.

pic_what_2

Lo que hace una bomba de calor es que literalmente agarra el calor de afuera y lo transfiere adentro, esto hace que no se tenga que utilizar mucha electricidad, lo que genera un ahorro de energía.

 Ya que entendimos que es y que hace una bomba de calor, ahora vamos a aprender ¿Cómo funciona?

  • pic_heat_transferEl calor es transferido por los refrigerantes

Como ya saben, el aire acondicionado utiliza refrigerante para transferir el calor de adentro y mandarlo afuera. Una bomba de calor hace exactamente lo mismo, pero al revés. La bomba de calor utiliza el refrigerante para transferir el calor de afuera hacia adentro, y de esta manera calentar el aire de la habitación.


  • Por naturaleza, el calor llena la habitación fría.

Lpic_spoonas leyes de la física nos dicen que el calor siempre se va a mover hacía una habitación fría. Tú puedes comprobar esto con un experimento sencillo desde tu casa. Simplemente calienta una cuchara y ponla encima de una cuchara fría, verás que en poco tiempo el calor se va a transferir a la cuchara fría y se va a calentar también. La transferencia de calor se detiene cuando la temperatura de las dos cucharas sean las mismas.

En el siguiente diagrama podemos observar claramente cómo se transfiere el calor de afuera hacía adentro:

6ae7433d-db2a-4e50-9723-bc67883be811


¿Tienes alguna duda? Escríbela en los comentarios de abajo, o contáctanos en nuestro Facebook, Twitter o YouTube.

En Quimobásicos nos interesa mucho tu opinión, ya que nos ayuda a brindarte un mejor servicio, por favor no dudes en hacernos saber cualquier comentario, critica o sugerencia que tengas sobre la empresa, los productos, o el blog.

Condensador y Evaporador: Los corazones del Sistemas de Refrigeración.


Condensador y Evaporador: Los corazones del Sistemas de Refrigeración.

En un sistema de refrigeración, el condensador y el evaporador son las ventanas a través de las cuales el calor sale y entra de una habitación. Estos componentes, que operan como intercambiadores de calor, funcionan bajo la tendencia natural de hacer fluir la energía (temperatura) desde un espacio caliente hacia otro frío gracias a las propiedades termodinámicas del refrigerante que llevan dentro.

¿Cómo fluye el calor?

La transferencia de calor ocurre cuando un cuerpo de mayor energía (mayor temperatura) traspasa su calor a uno de menor energía (menor temperatura) por medio de 3 fenómenos: la conducción, donde el calor fluye a través del contacto directo; la convección, donde el calor viaja a través de un fluido como el aire (está es la principal forma de cambio de temperatura en un sistema de refrigeración); y la radiación, proceso donde la energía es emitida a través de ondas de calor.

En un sistema de refrigeración, el evaporador es el encargado de absorber la energía de un cuarto, y el condensador expulsa esa energía a la parte externa del cuarto.

¿Qué provoca la transferencia de energía?

La transferencia de calor se rige por medio de estados físicos que afectan en su capacidad de absorción de calor. Los tres principales factores que influyen en el flujo de calor se explican a continuación:

  1. Diferencial de temperatura. La cantidad de calor que fluye de un cuerpo con mayor temperatura a un cuerpo con menor temperatura es directamente proporcional a la diferencia de temperaturas entre estos. Entre mayor sea la diferencia de temperatura, mayor será el flujo de calor y las temperaturas de estabilizarán con mayor rapidez. En cambio, si la diferencia de calor es pequeña, la velocidad de transferencia de calor es menor.
  1. Área o superficie de contacto. El flujo de calor es directamente proporcional a la superficie de contacto. En grandes áreas de contacto entre un cuerpo frío y otro caliente, el calor fluirá más rápidamente que en áreas pequeñas donde el contacto es menor. Un buen ejemplo de este fenómeno sucede en los refrigeradores domésticos que cuentan con serpentín negro en la parte trasera. El serpentín aumenta el área de contacto del refrigerante que pasa en su interior, ayudando a la disipación del calor y mejorando la eficiencia del equipo.
  1. Conductividad de Materiales. La conductividad es la capacidad que tienen los materiales en transferir calor. Los conductores, que son materiales con altos valores de conductividad, permiten que el calor fluya más rápido a través de ellos; mientras que los materiales con menor conductividad de calor dificultan el flujo de la energía. Algunos materiales comúnmente utilizados en los sistemas de refrigeración por sus altos valores de conductividad son el Cobre, Aluminio, o inclusive el níquel.

FUNCIONES DEL EVAPORADOR Y CONDENSADOR.

El evaporador.

 El evaporador es el encargado de absorber la energía del cuarto frío y transferirla al refrigerante. La absorción de energía promueve que el refrigerante se evapore dentro del sistema. Este proceso provoca que la temperatura del cuarto o habitación disminuya gradualmente mientras el refrigerante se esté evaporando.

Para generar el movimiento del refrigerante dentro de evaporador, todo el vapor que sale del equipo es succionado por el compresor, aumentando la presión necesaria para iniciar el proceso de condensación.

Algunos de los requisitos principales para el óptimo funcionamiento de un evaporador son:

  1. Mantener un volumen de intercambio constante.
  2. Permitir el flujo del refrigerante con una mínima caída de presión.
  3. Tener un diseño apropiado (con materiales adecuados) que permita flujo de calor al refrigerante en una forma fácil y rápida.

El condensador.

En el condensador, la operación es justamente contraía a la del evaporador. El vapor de refrigerante entra al condensador después de ser comprimido por el compresor a una alta presión y elevada temperatura, permitiendo el intercambio de calor con el aire, agua de proceso o con cualquier fluido. Esto logra el calor que absorbió del evaporador sea cedido al medio ambiente (o cualquier otro fluido). En el proceso de condensación, el refrigerante cambia de vapor a líquido saturado o líquido sub-enfriado, a fin de que se mantenga en fase líquida en su camino de retorno al evaporador.

Algunos de los tipos de condensadores más comunes, de acuerdo a su funcionamiento y/o sus materiales, son los siguientes:

  1. Enfriado por aire.
  2. Enfriado por agua.
  3. Tubo concéntricos
  4. Carcaza y tubos.
  5. Agua de torre.

Tres puntos importantes que con los que debe cumplir un condensador son los siguientes:

  • Poseer suficiente área de intercambio.
  • Mínima caída de presión.
  • Materiales que faciliten la transferencia de calor.


¿Tienes alguna duda sobre esta publicación en la que desees te apoyemos? Escríbela en los comentarios de abajo, o contáctanos en nuestro FacebookTwitter o YouTube. También ponemos a nuestros expertos a tu disposición en el correo electrónico asesor.quimobasicos@cydsa.com para resolver tus dudas sobre gases refrigerantes de la mejor manera.

En Quimobásicos nos interesa mucho tu opinión, ya que nos ayuda a brindarte un mejor servicio, por favor no dudes en hacernos saber cualquier comentario, critica o sugerencia que tengas sobre la empresa, los productos, o nuestras publicaciones.

Factores importantes de un refrigerante


Factores importantes de un refrigerante

En esta entrada vamos a conocer un poco más sobre cómo funcionan los gases refrigerantes. Antes que nada tenemos que entender que un gas refrigerante es el intermediario encargado de absorber calor en los sistemas.

Esto nos lleva a la pregunta, ¿qué es y cómo se mide el calor?
– El calor es una forma de energía, (lo que absorbe y desecha el refrigerante es energía en un sistema de compresión de vapor).
– Todo objeto tiene cierta cantidad de energía, esta energía es medida en BTUs (British Thermal Unit).
– La concentración de energía es comúnmente medida a través de la temperatura.
– Existen 3 tipos de energía: Potencial, Cinética, e Interna

Flujo de energía = Energía / Tiempo = Potencia
La intensidad de flujo es afectada por la diferencia de temperatura, área de transferencia de calor y tipo der material.
Los tipos de transferencia más comunes son conducción, convección y radiación, y podemos ver cuál es el proceso de cada uno en el siguiente esquema:

Cuando se desee reemplazar el REFRIGERANTE de un sistema es necesario tomar en cuenta los siguientes factores:

1. CAPACIDAD: El refrigerante debe de contar con la suficiente capacidad para mantener las temperaturas requeridas.

2. EFICIENCIA: ¿Cuánto aporta el refrigerante al total del consumo en el sistema?

3. FLUJO MÁSICO: Cuando existe un flujo másico alto significa más refrigerante moviéndose en el sistema. Diferentes flujos másicos requieren cambio de TXV o reemplazo de capilar.

4. GWP (Global-warming potential): ¿Cuánto calor puede ser atrapado por un determinado gas de efecto invernadero? Nosotros recomendamos adquirir los refrigerantes con un bajo potencial de calentamiento global (GWP, por sus siglas en ingles), como por ejemplo nuestro GENETRON® 134a ECO.

5. SOBRECALENTAMIENTO: Se necesita proteger el compresor y asegurar la capacidad del refrigerante.

6. RETORNO DE ACEITE: El refrigerante debe ser miscible con el aceite, tal que permita el retorno y protección del compresor.


¿Tienes alguna duda adicional que no hayamos resuelto en esta publicación? Por favor escríbela en los comentarios al final de esta publicación, o si lo prefieres, contáctanos en nuestras redes sociales: Facebook, Twitter, Google+ y YouTube.

En Quimobásicos nos interesa mucho tu opinión, ya que nos ayuda a brindarte un mejor servicio, por favor no dudes en hacernos saber cualquier comentario, critica, o sugerencia que tengas sobre la empresa, los productos Genetron, o el blog mismo. Para nosotros tu satisfacción es lo más importante.

A %d blogueros les gusta esto: