Archivo del sitio

Sustitución del R-12, alternativas de reemplazo e historia de este gran gas refrigerante.

Como algunos de nosotros sabemos, en la historia de los refrigerantes la necesidad de tener un refrigerante que no fuera tóxico ni inflamable dio la oportunidad de tener un refrigerante como el R12 (el cual era un clorofluorocarbono); este refrigerante fue uno de los pioneros en la refrigeración doméstica y en la industria del Aire Acondicionado Automotriz. Sin embargo, y pese a su popularidad, de acuerdo a estudios realizados se descubrió que el refrigerante R12 estaba deteriorando la capa de ozono, por lo que fue necesario el cese de su producción a nivel global, lo cual en México sucedió en el año 2005.

En esta transición de la eliminación del R12 surgieron varias alternativas de refrigerantes como por ejemplo MP39, MP66, R409A, entre otros.

En algunos de los casos sólo era necesario reemplazar el R12 en los sistemas pudiendo trabajar con el mismo lubricante. Aún existen equipos que trabajan con los refrigerantes como el MP 39 o MP 66.

¿Cuál es la situación?

Estás alternativas contienen el R 22 como parte de su composición, y de acuerdo a la nueva regulación, el R 22 tiene una salida paulatina, por lo que es necesario el reemplazo de estos refrigerantes por un refrigerante libre de cloro, como opción a estos tendrías los refrigerantes 134a y 404A.

  

COMPOSICIÓN DE LA MEZCLA DE REFRIGERANTE


De CFC  a  HFC…
¿Qué se debe hacer para reemplazar?

Lo primero es recabar todos los datos de operación antes de hacer cualquier cambio.

  1. Recupere el refrigerante, recuerda NO ventear vapores a la atmósfera, esta cantidad debe quedar registrada.
  2. Recuperar el lubricante, esta cantidad debe quedar registrada y se suministra lubricante Poliolester (POE).
  3. Purgar el sistema a contra flujo con nitrógeno, no es necesario limpiar con R 141b.
  4. Realizar un vacío a 250 micrones.
  5. Suministrar el lubricante Poliolester al sistema, la misma cantidad que recuperó en el paso 3
  6. Cargar el sistema con el nuevo refrigerante 134a, de acuerdo a lo recuperado en el paso 2.
  7. Cargar al 85% y arrancar el sistema de acuerdo a las lecturas tomadas en el paso 1, ajustar el sistema con carga de un 5% hasta dejar en operación el sistema.

Conclusiones.

  • La eliminación de los HCFC se dará paulatinamente.
  • Se debe considerar el cambios a refrigerantes más amigables al medio ambiente.
  • Son pocos los pasos para el reemplazo.
  • Busca los lineamientos más completo en nuestra página quimobasicos.com
  • Si necesitas más información la puedes obtener en asesorías te asistirá uno de nuestros personal de servicio técnico.

¿Tienes alguna duda? Escríbela en los comentarios de abajo, o contáctanos en nuestro Facebook, Twitter o YouTube.

En Quimobásicos nos interesa mucho tu opinión, ya que nos ayuda a brindarte un mejor servicio, por favor no dudes en hacernos saber cualquier comentario, critica o sugerencia que tengas sobre la empresa, los productos, o el blog.

 

Buenas prácticas al trabajar con escaleras

Los equipos como las escaleras, son herramientas importantes en nuestras aéreas de trabajo u hogares. Al momento de trabajar con éstas, sin importar el tipo de trabajo a realizar ni la duración, debes tener un listado de las actividades que vas a realizar, ya sea limpieza del serpentín de un condensador A/C montado en la pared ó el reemplazo de un motor de evaporador del minisplit, pintar la casa, etc. estas actividades deben estar en un listado. En caso de que no venga en el listado, no se debe autorizar.

Escaleras portátiles rectas

Todas las escaleras deben estar fabricadas con largueros de fibra de vidrio.

Las escaleras verticales portátiles, que se utilicen en los trabajos de altura, deberán tener zapatas antiderrapantes en los apoyos inferiores. Deberán ser sujetadas en su parte superior con cuerda para evitar su movimiento.

 

Escaleras de tijeras

Las escaleras de tijera deben cubrir los mismos requisitos de las escaleras rectas excepto en el diseño de los peldaños que en este caso son tipo recto y con hendiduras antiderrapantes.

Las escaleras de tijera no deben exceder una longitud de 3 metros. El tensor que une las dos secciones de una escalera de tijera deberá ser dos secciones solidas articuladas. No se aceptan cadenas o cables como sustitutos del tensor articulado.

Consejos de prudencia y precauciones al momento de usar escaleras

  1. No uses una escalera recta como andamio.
  2. Nunca coloques escaleras frente a puertas, a menos que hayan sido cerradas y bloqueadas.
  3. No uses tambores, sillas, escritorios, etc. como sustitutos de escaleras.
  4. No soportes la escalera sobre tuberías de fibra de vidrio, o tuberías que transporten ácidos o productos tóxicos o inflamables.
  5. Siempre sube y baja las escaleras colocándote de frente a ellas.
  6. No subas o bajes una escalera llevando objetos (carga) en una de las manos.
  7. Sólo una persona podrá hacer uso a la vez de una escalera (se debe respetar la carga de diseño, pues al duplicar esta, se corren riesgos innecesarios).
  8. La inclinación correcta en el uso de escaleras portátiles deberá ser la relación 1-4, es decir, 1 metro de separación de la pared por cada 4 metros de longitud de la escalera al objetivo.
  9. Al hacer uso de una escalera es obligatorio amarrar la escalera por la parte superior de preferencia y el trabajador usar cinturón de seguridad sujeto a una estructura independiente de la escalera.
  10. Al amarrar o desatar una escalera, deberá estar una persona abajo, deteniendo la escalera.
  11. Las escaleras deben inspeccionarse cuando menos una vez al mes.
  12. Verifica que tus zapatos no se encuentren lodosos o grasosos al usar este tipo de escaleras.
  13. No uses el descanso superior de las escaleras como peldaños.
  14. En algunas ocasiones por la altura que está trabajando deberás traer equipo de seguridad como lo es el arnés de vida.
  15. Cuando se esté maniobrando sobre una escalera vertical, por ningún motivo deberás estirarse hacia los lados donde está el punto de apoyo de la escalera

 

Cuidado de las escaleras

 

Manejo adecuado

Las escaleras, como cualquier otra herramienta, deben manejarse con cuidado y no deben someterse a golpes, choques ni mal uso innecesario. Están diseñadas con una finalidad específica: por lo tanto, toda desviación de este uso constituye un mal uso de las mismas.

Almacenamiento

Las escaleras deben colocarse en soportes diseñados para protegerlas cuando no están en uso. Estos soportes deben tener suficientes puntos de apoyo como para impedir que la escalera se doble excesivamente en el medio. Mientras la escalera esté almacenada, no se puede colocar nada sobre ella

Mantenimiento

En todo momento, las escaleras se deben mantener en buenas condiciones de uso. Los herrajes, conexiones y accesorios deben inspeccionarse con frecuencia y se deben mantener en buenas condiciones de uso. Todas las conexiones deben lubricarse frecuentemente con un aceite liviano y deben mantenerse en buenas condiciones. Antes de usar la escalera se deben revisar todos los tornillos; no debe usarse ninguna escalera si le faltara algún sujetador. No use la escalera si las zapatas estuvieran demasiado desgastadas. Asegúrese que aún estén en buenas condiciones para que el metal de las patas o los dispositivos de sujeción no estén en contacto con el piso.

Al momento de usar las escaleras deberás acordonar el área donde se realizarán labores de altura y evitar lesionar al personal que por esa área transite. Cuando termines de usar una escalera, deberá guardarla en su lugar y limpie el área donde trabajo.

Una escalera que presenta daños, debe retirarse para su sustitución y además una breve descripción del daño observado. Las escaleras deben mantenerse limpias de grasa, aceites y lodo, para evitar caídas o resbalones y en el caso de las escaleras de fibra de vidrio, evitar la conducción de electricidad. Almacena las escaleras colgadas en dos o más soportes o bien en el piso colocadas de canto y amarradas para evitar que caigan y lastimen a alguna persona.

 

Si tienes aún dudas al respecto de lo visto en está publicación, puedes dejarnos tus preguntas en la caja de comentarios u opiniones al respecto. Te agradeceremos mucho si le das a compartir a este Blog y no olvides consultar también a nuestros expertos a través del correo electrónico: asesor.quimobasicos@cydsa.com. Búscanos en nuestras redes sociales oficiales de FacebookTwitter, o Google+ y por medio de la nuestra página web.

 

¿Por qué elegir el sistema inverter?


¿Por qué escoger el sistema Inverter en el aire acondicionado?

¿Sabes para qué puede servir el sistema Inverter? Según la definición dada por uno de los fabricantes, el sistema Inverter “controla la velocidad del motor eficientemente para que de esta manera exista un menor gasto de energía”.

Los aires acondicionados tienen la capacidad de mantener un perfecto control sobre la temperatura puesto que enfría cuando la temperatura de la habitación es más alta, y calienta cuando ocurre lo contrario.

La diferencia de usar el sistema Inverter en comparación a un aire acondicionado tradicional reside en el motor. Un motor sin Inverter tiene una velocidad constante y poco tiempo después se apagara, luego vuelve a prender: esto ocurre cada vez que se tenga que ajustar la temperatura de la habitación. Por otro lado, un motor con tecnología Inverter llega a ajustar la temperatura cambiando la velocidad del motor sin necesidad de apagarlo y volverlo a encender varias veces.

Con la anterior muestra se puede constatar entonces que los motores con sistema Inverter pueden llegar a ahorrar hasta un 30% más de energía a diferencia de un motor convencional de aire acondicionado.

Para aclarar un poco más lo anteriormente dicho, pongamos como ejemplo dos casos de personas corriendo:

  • La primera persona corre muy rápido, luego se detiene a descansar para después seguir corriendo, y así sucesivamente.
  • La segunda persona corre muy lento, parece más un trote, sin embargo nunca se detendrá a descansar debido a que no gasta demasiada energía a diferencia de la primera persona; mantiene de esta forma una velocidad siempre constante.

Hacia el final del camino, el primer corredor llegará a sentirse más cansado que el otro a causa de que utiliza una energía mayor para iniciar que para correr repetidamente.

Los anteriores ejemplos nos dejan claro lo que ocurre con los motores que no cuentan con el sistema Inverter ya que, al encenderse y apagarse, se gasta más energía generando de esta forma un consumo mayor de electricidad.

¿Sabes si tu aire acondicionado cuenta con Inverter? En Quimiobásicos somos expertos en gases refrigerantes, garantizamos la calidad de nuestros productos y cumplimos con las especificaciones requeridas para un buen funcionamiento de los equipos como es el caso del gas Genetron AZ20 (R410A).

¡Acude a tu distribuidor más cercano para recibir asesoría completa!


Si tienes comentarios al respecto de la siguiente entrada o si te parece útil te agradecemos que nos comentes en este tu Blog, nuestra página de Facebook o en la cuenta de Twitter que en Quimobásicos ponemos a tu disposición.

¿Tienes alguna duda adicional que no hayamos resuelto en esta publicación? Por favor escríbela en los comentarios al final de esta publicación, o si lo prefieres, contáctenos en nuestras redes sociales: Facebook, Twitter, Google+ y YouTube.

En Quimobásicos nos interesa mucho tu opinión, ya que nos ayuda a brindarte un mejor servicio, por favor no dudes en hacernos saber cualquier comentario, critica, o sugerencia que tengas sobre la empresa, los productos Genetron, o el blog mismo.

LA EVOLUCIÓN DE LOS REFRIGERANTES

Los refrigerantes a través del tiempo

A lo largo de las últimas décadas, la industria de la refrigeración y el aire acondicionado ha tenido transformaciones importantes al utilizar tecnología cada vez más avanzada, logrando de esta forma un aumento significativo en cuanto a la eficiencia energética. De esta manera ayudan también en la preservación del medio ambiente. Sin embargo, el cambio más importante, pero menos difundido, es el relacionado al alma de los equipos, sin la cual el equipo no tendría la capacidad de hacer su trabajo: los gases refrigerantes.

De seguro, en algunas ocasiones, hemos escuchado el término de generación de refrigerantes, de los cuales en la actualidad nos encontramos en la 4ª generación. Estas generaciones son definidas acorde a la composición química de los gases refrigerantes que componen cada generación.

Las generaciones de los gases se pueden definir de la siguiente manera:

  • 1ª Generación compuesta por los Clorofluorocarbonos (CFC´s) que contienen cloro, fluor y carbono en su composición química.
  • 2ª Generación compuesta por los Hidroclorofluorocarbonos (HCFC´s) que contienen Hidrogeno, cloro, fluor y carbono en su composición química.
  • 3ª Generación compuesta por los Hidrofluorocarbonos (HFC´s) contienen Hidrogeno, fluor y carbono en su composición.
  • 4ª Generación son las Hidrofluoroolefinas (HFO´s) que Contienen Hidrogeneo, fluor y carbono al igual que los HFC’s, pero son compuestos insaturados (tienen doble enlace).

Si nos preguntamos la razones del porqué existen cuatro generaciones, la respuesta es que debido a las regulaciones ambientales, las cuales limitan el uso del cloro en los compuestos liberados al ambiente y el impacto de los gases liberados sobre el calentamiento global, es necesario renovarse constantemente. Ante lo anterior, los científicos han estado en busca de remplazos para los refrigerantes basados en dos factores que deterioran al ambiente: el agotamiento de la capa de ozono (ODP por sus siglas en ingles) y potencial de efecto invernadero (GWP por las siglas en ingles).

Las primeras dos generaciones de los refrigerantes se caracterizan por afectar a estos dos factores, principalmente por su alto contenido de cloro. La generación siguiente, la tercera, no ataca a la capa de ozono, aunque eso no quita que contenga un alto nivel de GWP. Y por último, la cuarta generación, contiene una mayor ventaja que las primeras dos generaciones y, al igual que la tercera, ésta pretende no atacar a la capa de ozono además de poseer un nivel bajo de GWP.

Cuando se conoce una amplia variedad de refrigerantes pueden surgir algunas preguntas como: ¿cuál refrigerante se debe usar?, ¿se puede sustituir un refrigerante por otro en un equipo usado?, ¿cómo se hace el cambio de un refrigerante?, ¿se deben desechar los equipos que trabajan con equipos viejos?, ¿en dónde se puede disponer un refrigerante recuperado de un equipo viejo?, entre otras.

Todas estas preguntas y más se contestarán en los próximos blogs, les recomendamos estar atentos a todas las novedades que publicamos para ustedes.



¿Tienes alguna duda adicional que no hayamos resuelto en esta publicación? ¿Te agradaría algún tema relacionado o que ahonde en un tema similar? Escribe por favor en los comentarios al Final de esta publicación, o si lo prefieres contáctenos en nuestros contactos oficiales de Facebook, Twitter, Google Plus o canal de YouTube.

En Quimobásicos nos interesa mucho tu opinión, ya que nos ayuda a brindarte un mejor servicio, por favor no dudes en hacernos saber cualquier comentario, critica o sugerencia que tengas sobre la empresa, los productos de nuestras marcas Solstice® y Genetron®, o en el blog mismo.

RESOLVIENDO LAS DUDAS MÁS FRECUENTES ACERCA DEL GAS REFRIGERANTE GENETRON® AZ-20 (R 410A).



En Quimobásicos estamos muy conscientes de las dudas que surgen en relación al uso y naturaleza de algunos de nuestros productos.
Es por ello que en esta ocasión nos dimos a la tarea de aclarar algunas de las preguntas más frecuentes respecto al Gas Refrigerante R410A, comercializado por Quimobásicos bajo la marca registrada Genetron® AZ-20.

1. ¿Se puede reconvertir un equipo que contiene R 22 a R 410A?
No, el R 410A es un refrigerante de características muy distintas al R 22 y los equipos que funcionan con este refrigerante (R 410A) son de especificaciones y funcionalidades muy diferentes; de entre las variables más notorias podemos mencionar las distintas presiones de trabajo y los aceites.

2. ¿Cuál es la diferencia de presión entre el R 410A y el R 22?
El R 410A es uno de los gases refrigerantes con mayores presiones, el incremento es aproximadamente un 60% superior en comparación a las del R 22. Por ejemplo, la presión de R 22 lado de baja (60 a 70 psig) lado de alta (160 a 180 psig) R 410A lado de baja (120 a 130 psig) lado de alta (350 a 370 psig).

3. ¿Cómo se debe recuperar el R 410A de un sistema?
Siempre que se retire la carga total (hasta que haya vacío en el sistema) puede ser en la fase de vapor o líquido.

4. ¿Qué ocurre en caso de fuga de R 410A?
El R 410A es una mezcla casi azeotrópica, es decir que se comporta casi como si fuera un refrigerante puro. En el caso de fugas en un sistema prácticamente la composición del producto NO cambia, lo óptimo es volver a hacer la recarga del producto hasta completar la carga original.

a5. ¿Qué tipo de aceite se utiliza con el R 410A?
El refrigerante R 410A solamente se debe utilizar con lubricante polioléster (POE). Te recomendamos revisar con el fabricante del compresor la información sobre su viscosidad.

6. ¿Qué precauciones se deben de tomar con el aceite polioléster (POE)?

El aceite polioléster (POE) es muy higroscópico, es decir absorbe rápido la humedad del ambiente. Esta humedad absorbida por el aceite es responsable de la degradación del mismo. Si dejamos una lata de aceite polioléster abierta, al cabo de unos minutos (máximo 12 minutos) el aceite habrá absorbido la humedad del medio ambiente. Por esta razón, se recomienda dejar tapadas las latas de aceite cuando no se utiliza o buscar una bomba de aceite.

b

 

x7. ¿Qué tipo de tubería se emplea con el R 410A?
Debido a las presiones bajo las que trabaja el R 410A siempre es recomendable utilizar tuberías de cobre de buena calidad. En cualquier caso, las tuberías de cobre más utilizadas como son las de 1/4, 3/8 y 1/2 de diámetro, su espesor debe de ser siempre igual o superior a 0.80 milímetros.

8. ¿Cuál es la composición química del R 410A?
El R 410A es una mezcla casi azeotrópica de dos gases HFCs: HFC 32 (50%) y HFC 125 (50%).

9. ¿Cómo se debe de extraer el refrigerante R 410A de un CNR (Cilindro No Retornable)?
El R 410A solo se debe extraer del cilindro en la fase de líquido y es necesario invertir (voltear) el CNR para asegurar este efecto. Es importante recalcar que nunca debemos cargar el sistema, ni extraerlo en la fase de vapor, ya que esto provocará que tengamos un cambio en su composición másica.


Adicionalmente, te pedimos que siempre hagas uso de tu equipo de seguridad al llevar acabo tus labores diarias: lentes con protección lateral, guantes, zapatos de seguridad y camisa de manga larga. La prevención de los accidentes es una responsabilidad de todos y parte integral de las actividades de un técnico profesional y responsable.

¿Tienes alguna duda adicional que no hayamos resuelto en esta publicación? Por favor escríbela en los comentarios al final de esta publicación, o si lo prefieres, contáctenos en nuestras redes sociales: Facebook, Twitter, Google+ y YouTube.

En Quimobásicos nos interesa mucho tu opinión, ya que nos ayuda a brindarte un mejor servicio, por favor no dudes en hacernos saber cualquier comentario, critica, o sugerencia que tengas sobre la empresa, los productos Genetron, o el blog mismo.

A %d blogueros les gusta esto: