Archivo de la categoría: compresor

La necesidad de los bombas de vacío y los vacuómetros


La necesidad de los bombas de vacío y los vacuómetros

Como se ha mencionado con anterioridad, la aplicación de vacío a los sistemas de refrigeración es de vital importancia para evitar daños en los equipos y mejorar el funcionamiento del sistema completo.

¿Qué equipo necesito para realizar un correcto vacío al sistema?

Además del equipo de seguridad recomendado, se requiere una bomba de vacío adecuada y un vacuómetro que nos de la lectura del vacío aplicado.

La selección de la bomba de vacío se debe realizar de acuerdo a las toneladas de refrigeración del sistema. El manual de “Buenas prácticas en sistemas de refrigeración y aire acondicionado” recomienda seleccionar la bomba siguiendo la siguiente relación:

Toneladas de refrigeración del sistema ÷ 7 = cfm’s requeridos

Cabe mencionar que es importante revisar las recomendaciones de los fabricantes sobre las capacidades de las bombas de vacío. La relación descrita anteriormente solo sirve como guía general, y el fabricante dará la información real sobre cual bomba se ajusta mejor a cada tipo de sistema de refrigeración.

Una práctica común entre los técnicos es utilizar un compresor fraccionario o el mismo compresor del sistema para realizar el vacío. Las consecuencias de estas prácticas son las siguientes:

  • No se llega al vacío requerido debido que los compresores están diseñados para aumentar la presión de un gas, no para generar vacío.
  • Estos compresores utilizan el mismo refrigerante del sistema para enfriarse. Al hacer vacío se obliga al compresor a trabajar sin su medio de enfriamiento, provocando que la temperatura de las bobinas se eleve y se dañe el compresor.
  • Las bobinas del motor generan arcos eléctricos cuando se trabaja el compresor en condiciones de vacío, lo que puede provocar daños al equipo o un corto circuito.

Para asegurar que la bomba llegó al nivel de vacío correcto se requiere el uso de un vacuómetro. Los vacuómetros más comunes son los electrónicos, que tienen la ventaja de ser muy resistentes y de no requerir calibración para empezar a utilizarlos.

¿Por qué es necesario medir la presión de vacío en el sistema en vez de solo contar el tiempo de trabajo de la bomba?
Al bajar la presión en el sistema hacemos que el agua se evapore a temperatura ambiente, permitiendo que la bomba la succione junto con otros vapores para expulsarlos al exterior. Al no hacer la medición correcta de la presión de vacío corremos el riesgo de que la presión baje a tal punto de que el aceite comience a hervir y sea expulsado por la bomba junto con la humedad y otros contaminantes, provocando graves daños al compresor.

Ahora sabemos la importancia de tener el equipo adecuado al realizar el proceso de vacío a los sistemas de refrigeración, y sobre todo debemos recordar usar el equipo de seguridad adecuado al trabajar con los sistemas de refrigeración.


¿Tienes alguna duda adicional que no hayamos resuelto en esta publicación? Por favor escríbela en los comentarios al final de esta publicación, o si lo prefieres, contáctanos en nuestras redes sociales: Facebook, Twitter, Google+ y YouTube.

En Quimobásicos nos interesa mucho tu opinión, ya que nos ayuda a brindarte un mejor servicio, por favor no dudes en hacernos saber cualquier comentario, critica, o sugerencia que tengas sobre la empresa, los productos Genetron, o el blog mismo. Para nosotros tu satisfacción es lo más importante.

03 - Copy

Humedad en sistemas de Refrigeración


Humedad en sistemas de Refrigeración

En varias ocasiones se ha hablado sobre la importancia del proceso de vacío aplicado a los sistemas de refrigeración. Gracias al vacío, podemos depurar el sistema interno de impurezas que pueden dañar o disminuir la eficiencia y capacidad del refrigerante; y una de las impurezas más relevantes en nuestro ámbito es la humedad.

Muchos técnicos desconocen de forma parcial o total la forma correcta de ejecutar el proceso de vacío. Al omitir o hacer de forma incorrecta el proceso, nos atenemos a un mal funcionamiento de los equipos a los que les damos servicio, traduciéndose en visitas costos extras al momento en que los clientes exigen su garantía.

Uno de los principales errores cometidos al aplicar vacío a los sistemas de refrigeración, es utilizar equipos no aptos para el proceso tales como compresores que utilizamos como sustitutos a las bombas de vacío, o la utilización del mismo compresor del sistema de refrigeración para generar el vacío requerido. También solemos prescindir del equipo adecuado de medición de vacío correspondiente y lo sustituimos con el conteo del tiempo que la bomba de vacío lleva encendida.

Dicho lo anterior, podemos preguntarnos: ¿Qué sucede cuando dejamos rastros de humedad al aplicar de manera incorrecta el vacío al sistema?

Al existir humedad en el sistema existe la gran probabilidad de que se genere hielo en las partes internas del ciclo de refrigeración, principalmente el tubo capilar o válvula de expansión. Esto genera daños importantes a la unidad más cara de todo el sistema, el compresor.

Los dos síntomas principales son el exceso de refrigerante suministrado por la válvula, o la disminución o paro completo del suministro de gas por la válvula. Estos problemas ocasionan:

  • Que la temperatura del aire o agua suministrado sea alta.
  • El sobrecalentamiento excesivo del sistema o sobrecalentamiento inexistente.
  • La presión de succión puede ser menor o mayor de lo recomendado.
  • La presencia de líquido en el compresor.

Sin embargo, el principal problema ocurre con la presencia de aire y humedad. El aire y la humedad, al combinarse con los refrigerantes que contienen cloro o flúor, generan compuestos ácidos que deteriora los sistemas herméticos y semiherméticos; ocasionando problemas prematuros al motocompesor debido a su gran poder corrosivo. Adicionalmente, es importante comentar que los fabricantes de compresores no otorgan ningún tipo de garantía para problemas generados por presencia de humedad en el sistema.

Ahora que conocemos la importancia de eliminar la humedad y el aire de los sistemas de refrigeración, debemos prepararnos adecuadamente para realizar los procesos de vacío de manera correcta y con los equipos necesarios. En próximas entregas expondremos las buenas prácticas para la limpieza de sistemas de refrigeración por vacío.


¿Tienes alguna duda adicional que no hayamos resuelto en esta publicación? Por favor escríbela en los comentarios al final de esta publicación, o si lo prefieres, contáctanos en nuestras redes sociales: Facebook, Twitter, Google+ y YouTube.

En Quimobásicos nos interesa mucho tu opinión, ya que nos ayuda a brindarte un mejor servicio, por favor no dudes en hacernos saber cualquier comentario, critica, o sugerencia que tengas sobre la empresa, los productos Genetron, o el blog mismo

Recuperación y reutilización de gases refrigerantes

Recuperación y reutilización de gases refrigerantes

La recuperación de los gases refrigerantes es una de las maneras más efectivas de disminuir las emisiones de los refrigerantes a la atmósfera.

Una de las causas por las que la capa de ozono sufre de un degradamiento es por los efectos que producen los gases al hacer contacto con la atmósfera. Este problema es causa de la desinformación de los técnicos al no saber qué hacer con el refrigerante cuando ya no lo quieren utilizar, le dan un mantenimiento al compresor, cambio de válvula de expansión, entre otras actividades.

La recuperación del refrigerante evita la emisión de estos productos al ambiente. Un técnico debe hacer una buena recuperación para evitar que los gases se liberen a la atmósfera. Para esta ejecución se debe utilizar equipo adecuado como las recuperadoras y los cilindros de recuperado.

Se debe tener tanque de recuperado especial.
No se deben utilizar los cilindros de refrigerante como recipientes para recuperar.

Los tanques de recuperado son de color gris con la parte superior en amarillo, esto también dependerá del fabricante. Existen diversas capacidades de estos recipientes, los tanques pequeños traen dos válvulas en un mismo puerto, una de color azul, que corresponde al vapor y otra de color rojo que es de líquido.

Precaución: No se debe confundir con el color de los manómetros de refrigeración porque tendrá problemas cuando quiera recuperar.

Formas de recuperar el refrigerante:

Recuperado: El refrigerante se vuelve a utilizar sin analizar, esto se hace con un equipo de recuperado hacia el tanque almacén y se regresa el mismo refrigerante al equipo sin analizar.

Reciclar: Esto se puede hacer en una máquina especial. Lo que hace el equipo es separar lubricante del refrigerante para volver a utilizar.

El reciclado de un refrigerante se hace para reducir los contaminantes que se encuentran en el refrigerante usado, este proceso conlleva la separación del aceite, eliminación de las sustancias no condensables y la utilización de filtros secadores de núcleo que reducen la humedad, la acidez y las partículas.

Reclaim: En este proceso el refrigerante alcanza la especificación de producto nuevo, (virgen) donde se considera limpio, sin humedad y no condensable. A este proceso se puede realizar un análisis de pureza de acuerdo al ARI-700.

Recuerda que es muy importante no ventear el refrigerante a la atmósfera.

Forma de recuperado

Recuperar el refrigerante en fase de líquido, esto puede ser para sistemas grandes o pequeños donde tenga una toma para conectar las mangueras o sistemas que contengan un recibidor de líquido. Recuperado de refrigerante para equipos con el compresor sin funcionar, este es para sistemas pequeños como el doméstico y AC automotriz.

Recuperado si el compresor funciona, retirar la manguera de baja y extraer por el lado de alta, en este efecto es importante tener el tanque de recuperado en un recipiente frío para que no se presurice el tanque.

Recuerda, método líquido – vapor, sólo vapor, líquido – vapor por push pull, puede ser para la sustitución de un refrigerante de un CFC a un HCFC o hacia un HFC, también puede ser para el cambio de aceite de un sistema o por el compresor dañado, lo importante es tomar en cuenta que debemos cambiar la forma de hacer las cosas.

Existen centros de reciclado instalados por parte de la SEMARNAT en México que podrán ayudarte con la limpieza de tu refrigerante y la re-utilización y bajar las emanaciones de estos gases al ambiente. Puedes buscar el más cercano en http://sissao.semarnat.gob.mx/

¿Tienes alguna duda adicional que no hayamos resuelto en esta publicación? Por favor escríbela en los comentarios al final de esta publicación, o si lo prefieres, contáctanos en nuestras redes sociales: Facebook, Twitter, Google+ y YouTube.

En Quimobásicos nos interesa mucho tu opinión, ya que nos ayuda a brindarte un mejor servicio, por favor no dudes en hacernos saber cualquier comentario, critica, o sugerencia que tengas sobre la empresa, los productos Genetron, o el blog mismo

Un filtro deshidratador o secador correcto puede hacer la diferencia en el funcionamiento del sistema.

1280x720-px-1-quimobasicos-filtro

1El filtro deshidratador o secador es uno de los componentes básicos del sistema de re­frigeración y aire acondicionado, siendo responsable por evitar que impurezas y/o humedad pasen hacia el elemento de control (tubo capilar o válvula de expansión) o hacia el propio compresor. Por eso, es esencial que se use un modelo de buena calidad y que sea adecua­do al equipo en donde se instalará, además propio para el tipo de refrigerante marca Genetron con el que trates.

Una de las principales funciones del filtro es la de absorber humedad en el sistema. Aún después realizar un proceso de vacío correctamente, podría existir humedad, por eso el filtro es muy importante. Además, el filtro también tiene la función de impedir que pasen partículas sólidas (astillas metálicas de acero o de cobre, residuos de soldadura, entre otras) lo que pueden provocar que el sistema se pueda tapar y traer problemas como baja de enfriamiento, protección por baja presión de succión, alta temperatura de la descarga, por mencionar algunos.

Muchas veces la obstrucción es parcial, llevando a la caída de rendimiento del sistema. En este caso, el problema puede ser incorrectamente atribuido al compresor o a la carga del refrigerante. Por ello, se necesita hacer un análisis detallado de la situación antes de iniciar el trabajo.

Ejemplo del tipo de filtro deshidratador.

2

La mayoría de los fabricantes de filtros deshidratadores publican tabla de capacidad

CAPACIDAD DE FLUJO DE REFRIGERANTE —

Es el máximo flujo de refrigerante (en toneladas) que el filtro secador deja pasar con una caída de presión de 1 psi. Los valores en toneladas están basados una temperatura de líquido de 30°C y flujos de refrigerante.

3.1 lbs. Por minuto por tonelada de refrigerante 134a

2.9 lbs. Por minuto por tonelada de refrigerante 22

3.9 lbs. Por minuto por tonelada de refrigerante 404A

2.9 lbs. Por minuto por tonelada de refrigerante 407C

2.8 lbs. Por minuto por tonelada de refrigerante 410A

4.1 lbs. Por minuto por tonelada de refrigerante 507

3

 Hay que recordar que existe una gama muy extensa de tipos de filtros deshidratadores, el técnico debe conocer la mejor opción para la protección del equipo.

A continuación te proporcionamos un enlace a la página web del fabricante Parker, en ella podrás localizar el mejor filtro deshidratador según tu necesidad.

http://ph.parker.com/us/17575/es/refrigerant-filters-dryers-spd


¿Tienes alguna duda? Escríbela en los comentarios de abajo, o contáctanos en nuestro FacebookTwitter o YouTube.

En Quimobásicos nos interesa mucho tu opinión, ya que nos ayuda a brindarte un mejor servicio, por favor no dudes en hacernos saber cualquier comentario, critica o sugerencia que tengas sobre la empresa, los productos, o el blog.

Tubos capilares en sistemas de refrigeración

1280x720-px-1-quimobasicos

foto-1Los tubos capilares son dispositivos de expansión en sistemas de refrigeración pequeños, como el aire acondicionado residencial, refrigeradores domésticos, vitrinas de refrigeración de media temperatura comercial, enfriadores de botellón, etc.

Los refrigerantes, R22, R404A, R502, R134a, entre otros, siguiendo el ciclo normal de refrigeración, entrarán al capilar. Podemos señalar las medidas de capilares más comunes, que son de 1 a 6 metros de largo x 0.5 a 2 mm de diámetro. Estos datos deben ser de acuerdo a la capacidad del compresor y temperatura del sistema.

El capilar cumple dos tareas: reducir la presión del refrigerante líquido que sale del condensador hacia el evaporador y regular el flujo másico (la cantidad de líquido) del refrigerante que va hacia el evaporador para el efecto de enfriamiento.

De esta forma, si el vapor refrigerante no está completamente en forma de líquido, el flujo másico será reducido, teniendo por consiguiente un bajo enfriamiento y recalentamiento del refrigerante que llega al compresor. Por otra parte, si existiera exceso de refrigerante acumulado en el condensador, la presión y la temperatura en el condensador aumentarán y la capacidad en el evaporador disminuirá.

foto-2“Una vez que se ha definido bien un capilar, nuestro sistema trabajará eficientemente y con buena capacidad de enfriamiento”

La presencia de humedad dentro del sistema, residuos de sólidos, tubo capilar obstruido o doblado, podrá ocasionar variación del flujo refrigerante teniendo como resultado bajo desempeño del equipo. Por esta razón se debe tener cuidado en el manejo del capilar, estos deben estar tapados y se debe retirar el tapón apenas lo utilice. Las dimensiones son de acuerdo a su operación en el sistema; Por lo tanto, variaciones de temperatura de condensación o cambio de carga térmica reducen su eficiencia.

 LA CARGA INSUFICIENTE DE REFRIGERANTE:

Este efecto traerá como consecuencia utilizar el evaporador parcial y menor capacidad de refrigeración.

LA CARGA DE REFRIGERANTE EXCESIVA:

La presión del condensador se elevará, sobrecargando la función del compresor y bajando la capacidad del condensador.

En algunos casos el refrigerante puede llegar líquido al compresor dañándolo.

 Para sistemas que trabajan con 134a, como este refrigerante, posee un efecto de refrigeración superior al R12. Se reduce el flujo másico para una determinada capacidad. Como resultado, se necesita tener un diámetro interno menor o su largo de entre 10 a 20% más al mismo capilar del R12.

 Para sistemas con refrigerante como el R 404A, que posee un efecto de refrigeración superior al R502, se reduce el flujo másico requerido para una determinada capacidad. Como consecuencia, el capilar necesita aumentar su largo hasta un 15% y su diámetro al mismo que el R502.

 Aquí algunas tablas para selección del capilar. Esta información fue tomada del manual de buenas prácticas en refrigeración y aire acondicionado.
00


¿Tienes alguna duda? Escríbela en los comentarios de abajo, o contáctanos en nuestro Facebook, Twitter o YouTube.

En Quimobásicos nos interesa mucho tu opinión, ya que nos ayuda a brindarte un mejor servicio, por favor no dudes en hacernos saber cualquier comentario, critica o sugerencia que tengas sobre la empresa, los productos, o el blog.

 

A %d blogueros les gusta esto: