Archivo del sitio

¿Cómo utilizar una Tabla de Presión vs. Temperatura?


Algunos puntos clave deben ser considerados a la hora de resolver problemas usando una Tabla de Presión vs. Temperatura. Es importante que el técnico del servicio tenga a la mano la información adecuada al tratar de resolver un problema; por ejemplo, determinar la temperatura del serpentín (o su temperatura promedio) durante la operación.

En los refrigerantes más comunes, tales como el R-22 y el R-404A, la temperatura del serpentín puede ser leída en la escala de temperatura que muestra el indicador o calibrador.

En otros refrigerantes, especialmente para los de bajo deslizamiento, la temperatura del serpentín puede determinarse utilizando una Tabla de Presión vs. Temperatura, al ubicar la presión en el indicador y revisar su temperatura correspondiente. Sin embargo, En los refrigerantes de más alto deslizamiento, la tarea es un poco más difícil.

(más…)

La relevancia de conocer las especificaciones de los Gases Refrigerantes.



Cuando hablamos de tipos de refrigerante tenemos que hablar también de la enorme variedad de equipos según su función, ya sea de conservación, confort, refrigeración, congelación e inclusive criogénicos. El tipo de refrigerante depende en gran medida de su aplicación final.

Los refrigerantes deben cumplir estrictos estándares de calidad los cuales se hallan establecidos en la norma ‘AHRI 700-2012’ que se refiere de manera precisa a las especificaciones con que deben cumplir los Refrigerantes Fluorocarbonados (Specification for Fluorocarbon Refrigerants).

Para conocer las especificaciones de los gases refrigerantes estos se someten a pruebas mediante un equipo llamado cromatógrafo, que nos indica las condiciones generales del gas refrigerante previo a ser envasado para su comercialización.

Las siguientes cinco características son las más comúnmente verificadas en laboratorios de acuerdo al programa de certificación de Refrigerantes:

  1. Humedad (ppm en peso).
  2. Acidez (ppm en peso).
  3. Residuo de alto punto de ebullición (% en volumen).
  4. No condensables (% en volumen).
  5. Impurezas volátiles, incluyendo otros refrigerantes (% en volumen).

Esto datos pudiesen ser más extensos y exhaustivos pero, como ya lo mencionábamos anteriormente, los análisis enlistados previamente son los más significativos al momento de reconocer las condiciones de calidad otorgadas por el fabricante de gases refrigerantes.

En el caso de las mezclas de gases refrigerantes, estas también deben ser sometidas a las pruebas anteriores y cumplir con el estándar para el tipo de mezcla refrigerante que la AHRI 700-2012 dictamine. Algunos ejemplos de los refrigerantes catalogados como mezclas son el R 404A, el R 410A, el R 507A, o inclusive el R 438a, entre otros tantos.

Es de suma importancia que verifiquemos que los refrigerantes que manejamos provengan de un fabricante serio que cumpla con los parámetros de certificación aceptables para cada gas refrigerante, ya sea puro o mezcla. Es cada vez más común encontrar en el mercado refrigerantes de dudosa procedencia, la mayoría de las veces el signo distintivo de estos es precisamente no brindar información ni del fabricante, sus métodos de contacto, ni de sus estándares de calidad en cuanto a humedad, acidez, porcentaje de residuos, elementos no condensables o grado de impurezas volátiles.

Al momento de hablar de estándares de calidad no sólo estamos arriesgando los equipos de los clientes, ¡estamos poniendo en juego nuestra reputación como profesionales!

La próxima vez que estés tentado a recurrir a un refrigerante apócrifo o “patito”, recuerda que cada equipo está diseñado con especificaciones de presión y temperatura específicas al estándar oficial de cada refrigerante; y que si el refrigerante no cumple con estos estándares mínimos de calidad lo más seguro es que estarás arriesgando el funcionamiento de los equipos y la calidad de tu trabajo.

Sin más, agradecemos tu lectura. Si deseas comunicarte con nosotros envía tu correo a nuestro experto técnico Andrés Flores (andres.flores@cydsa.com) o síguenos en nuestras redes sociales las cuales te dejamos a continuación:

En Quimobásicos nos interesa mucho tu opinión, ya que nos ayuda a brindarte un mejor servicio, por favor no dudes en hacernos saber cualquier comentario, critica, o sugerencia que tengas sobre la empresa, los productos Genetron, o el blog mismo. Para nosotros tu satisfacción es lo más importante.

Humedad en sistemas de Refrigeración

Quimobasicos-Post-Blog-260924-03
Humedad en sistemas de Refrigeración

En varias ocasiones se ha hablado sobre la importancia del proceso de vacío aplicado a los sistemas de refrigeración. Gracias al vacío, podemos depurar el sistema interno de impurezas que pueden dañar o disminuir la eficiencia y capacidad del refrigerante; y una de las impurezas más relevantes en nuestro ámbito es la humedad.

Muchos técnicos desconocen de forma parcial o total la forma correcta de ejecutar el proceso de vacío. Al omitir o hacer de forma incorrecta el proceso, nos atenemos a un mal funcionamiento de los equipos a los que les damos servicio, traduciéndose en visitas costos extras al momento en que los clientes exigen su garantía.

Uno de los principales errores cometidos al aplicar vacío a los sistemas de refrigeración, es utilizar equipos no aptos para el proceso tales como compresores que utilizamos como sustitutos a las bombas de vacío, o la utilización del mismo compresor del sistema de refrigeración para generar el vacío requerido. También solemos prescindir del equipo adecuado de medición de vacío correspondiente y lo sustituimos con el conteo del tiempo que la bomba de vacío lleva encendida.

Dicho lo anterior, podemos preguntarnos: ¿Qué sucede cuando dejamos rastros de humedad al aplicar de manera incorrecta el vacío al sistema?

Al existir humedad en el sistema existe la gran probabilidad de que se genere hielo en las partes internas del ciclo de refrigeración, principalmente el tubo capilar o válvula de expansión. Esto genera daños importantes a la unidad más cara de todo el sistema, el compresor.

Los dos síntomas principales son el exceso de refrigerante suministrado por la válvula, o la disminución o paro completo del suministro de gas por la válvula. Estos problemas ocasionan:

  • Que la temperatura del aire o agua suministrado sea alta.
  • El sobrecalentamiento excesivo del sistema o sobrecalentamiento inexistente.
  • La presión de succión puede ser menor o mayor de lo recomendado.
  • La presencia de líquido en el compresor.

Sin embargo, el principal problema ocurre con la presencia de aire y humedad. El aire y la humedad, al combinarse con los refrigerantes que contienen cloro o flúor, generan compuestos ácidos que deteriora los sistemas herméticos y semiherméticos; ocasionando problemas prematuros al motocompesor debido a su gran poder corrosivo. Adicionalmente, es importante comentar que los fabricantes de compresores no otorgan ningún tipo de garantía para problemas generados por presencia de humedad en el sistema.

Ahora que conocemos la importancia de eliminar la humedad y el aire de los sistemas de refrigeración, debemos prepararnos adecuadamente para realizar los procesos de vacío de manera correcta y con los equipos necesarios. En próximas entregas expondremos las buenas prácticas para la limpieza de sistemas de refrigeración por vacío.


Sin más, agradecemos tu lectura. Si deseas comunicarte con nosotros envía tu correo a nuestro experto técnico Andrés Flores (andres.flores@cydsa.com) o síguenos en nuestras redes sociales las cuales te dejamos a continuación:

En Quimobásicos nos interesa mucho tu opinión, ya que nos ayuda a brindarte un mejor servicio, por favor no dudes en hacernos saber cualquier comentario, critica, o sugerencia que tengas sobre la empresa, los productos Genetron, o el blog mismo. Para nosotros tu satisfacción es lo más importante.

Tubos capilares en sistemas de refrigeración.

Quimobasicos-Post-Blog-260924-01

foto-1Los tubos capilares son dispositivos de expansión en sistemas de refrigeración pequeños, como el aire acondicionado residencial, refrigeradores domésticos, vitrinas de refrigeración de media temperatura comercial, enfriadores de botellón, etc.

Los refrigerantes, R22, R404A, R502, R134a, entre otros, siguiendo el ciclo normal de refrigeración, entrarán al capilar. Podemos señalar las medidas de capilares más comunes, que son de 1 a 6 metros de largo x 0.5 a 2 mm de diámetro. Estos datos deben ser de acuerdo a la capacidad del compresor y temperatura del sistema.

El capilar cumple dos tareas: reducir la presión del refrigerante líquido que sale del condensador hacia el evaporador y regular el flujo másico (la cantidad de líquido) del refrigerante que va hacia el evaporador para el efecto de enfriamiento.

De esta forma, si el vapor refrigerante no está completamente en forma de líquido, el flujo másico será reducido, teniendo por consiguiente un bajo enfriamiento y recalentamiento del refrigerante que llega al compresor. Por otra parte, si existiera exceso de refrigerante acumulado en el condensador, la presión y la temperatura en el condensador aumentarán y la capacidad en el evaporador disminuirá.

foto-2“Una vez que se ha definido bien un capilar, nuestro sistema trabajará eficientemente y con buena capacidad de enfriamiento”

La presencia de humedad dentro del sistema, residuos de sólidos, tubo capilar obstruido o doblado, podrá ocasionar variación del flujo refrigerante teniendo como resultado bajo desempeño del equipo. Por esta razón se debe tener cuidado en el manejo del capilar, estos deben estar tapados y se debe retirar el tapón apenas lo utilice. Las dimensiones son de acuerdo a su operación en el sistema; Por lo tanto, variaciones de temperatura de condensación o cambio de carga térmica reducen su eficiencia.

 LA CARGA INSUFICIENTE DE REFRIGERANTE:

Este efecto traerá como consecuencia utilizar el evaporador parcial y menor capacidad de refrigeración.

LA CARGA DE REFRIGERANTE EXCESIVA:

La presión del condensador se elevará, sobrecargando la función del compresor y bajando la capacidad del condensador.

En algunos casos el refrigerante puede llegar líquido al compresor dañándolo.

 Para sistemas que trabajan con 134a, como este refrigerante, posee un efecto de refrigeración superior al R12. Se reduce el flujo másico para una determinada capacidad. Como resultado, se necesita tener un diámetro interno menor o su largo de entre 10 a 20% más al mismo capilar del R12.

 Para sistemas con refrigerante como el R 404A, que posee un efecto de refrigeración superior al R502, se reduce el flujo másico requerido para una determinada capacidad. Como consecuencia, el capilar necesita aumentar su largo hasta un 15% y su diámetro al mismo que el R502.

 Aquí algunas tablas para selección del capilar. Esta información fue tomada del manual de buenas prácticas en refrigeración y aire acondicionado.
00


Sin más, agradecemos tu lectura. Si deseas comunicarte con nosotros envía tu correo a nuestro experto técnico Andrés Flores (andres.flores@cydsa.com) o síguenos en nuestras redes sociales las cuales te dejamos a continuación:

En Quimobásicos nos interesa mucho tu opinión, ya que nos ayuda a brindarte un mejor servicio, por favor no dudes en hacernos saber cualquier comentario, critica, o sugerencia que tengas sobre la empresa, los productos Genetron, o el blog mismo. Para nosotros tu satisfacción es lo más importante.

Deslizamiento de Temperatura (Glide), ¿Por qué es tan importante conocerlo?

05-Posts-blog

Todos los técnicos en refrigeración y aire acondicionado somos conscientes de la utilidad que tiene una tabla de presión vs temperatura a la hora de realizar nuestro trabajo, sin embargo, no todos dominamos la forma adecuada de leerlas.

Para ello en esta publicación nos daremos a la tarea de explicar de forma sencilla los conceptos de los famosos puntos de rocío y burbuja, y las diferencias entre los refrigerantes puros y las mezclas.

En los refrigerantes más comunes, la temperatura del serpentín se puede leer a partir de la escala de temperatura que muestra el indicador o calibrador, facilitando su medición, sin embargo, en los otros refrigerantes, la tarea se vuelve un poco más complicada debido al deslizamiento de temperatura.

El deslizamiento de temperatura del refrigerante determinará la forma que tomará la Tabla de Presión vs. Temperatura. Por lo tanto, es necesario revisar de manera rápida los principales conceptos básicos sobre el tema:

  • El deslizamiento ocurre porque los diferentes gases que componen una mezcla de refrigerantes poseen diferentes temperaturas de ebullición, lo que genera que las composiciones de la fase líquida y vapor sean diferentes dentro de un sistema cerrado.
  • Debido a las diferencias de temperatura, los gases más volubles se evaporan primero, generando que la temperatura de ebullición de la fase líquida vaya aumentando cada vez que se evapora más producto.
  • La temperatura de evaporación promedio se ubica entre la temperatura en la que el refrigerante comienza a hervir a la entrada del dispositivo de expansión y en la que deja de hervir en la parte final del evaporador.
  • El deslizamiento de temperatura promedio es usado para comparar el punto de ebullición en cada refrigerante y con ello obtener la misma temperatura promedio del serpentín.
  • El deslizamiento de temperatura en el condensador ocurre de la misma manera que en el evaporador, pero el proceso es revertido a medida que los componentes se condensan en diferentes escalas en la entrada y la salida.
  • El punto de burbuja es la temperatura donde aparece la primera burbuja de un líquido que comienza a hervir, mientras que el punto de rocío es la temperatura donde aparece la primera gota de líquido de un vapor que se empieza a condensar.

Para entender de manera gráfica los conceptos, se muestran a continuación dos diagramas que representan la evaporación/Condensación de un compuesto puro y una mezcla.

Para un componente puro, se puede observar un punto donde su vapor empieza a cambiar a estado líquido, o cuando ese líquido cambia a vapor. En lo que sucede este cambio, la temperatura se mantiene constante. Lo anterior es debido a que la energía requerida para realizar el cambio de una fase a otra se gasta en su totalidad evitando de esta forma los cambios en la energía interna del compuesto.

Como se puede observar en la gráfica para una mezcla zeotrópica, al ser primero el cambio de estado de los compuestos altamente volátiles, la temperatura durante el proceso va en aumento hasta llegar a la evaporación o condensación en su totalidad.

Sin más, agradecemos tu lectura. Si deseas comunicarte con nosotros envía tu correo a nuestro experto técnico Andrés Flores (andres.flores@cydsa.com) o síguenos en nuestras redes sociales las cuales te dejamos a continuación:

En Quimobásicos nos interesa mucho tu opinión, ya que nos ayuda a brindarte un mejor servicio, por favor no dudes en hacernos saber cualquier comentario, critica, o sugerencia que tengas sobre la empresa, los productos Genetron, o el blog mismo. Para nosotros tu satisfacción es lo más importante.