Archivo de la categoría: aire acondicionado
Tecnología Inverter. ¿Como funciona esta innovación?

Seguramente más de un cliente te ha preguntado: «¿Qué es un aire acondicionado inverter?«, ¿sabes lo que es? De acuerdo a uno de los fabricantes más prestigiados de equipos de aire acondicionado del mundo: «Un Inverter es un sistema que controla la velocidad del motor eficientemente para que de esta manera exista un menor gasto de energía».
Los aires acondicionados «con inverter» y «sin inverter» controlan la temperatura de la habitación de la misma forma: enfriando cuando la temperatura de la habitación es más alta que la temperatura predeterminada y calentando cuando es más baja.

Algunos fabricantes indican que los consumos «Con Tecnología Inverter» son 30% menores que sin ella.
La diferencia que hace el inverter comparado contra un aire acondicionado tradicional está en el motor. El motor de un aire acondicionado «sin inverter» tiene una velocidad constante y simplemente se apaga y se prende cada vez que la temperatura tiene que ser ajustada. Mientras que, a diferencia de lo anterior, el motor de un aire acondicionado «con inverter» ajusta la temperatura cambiando la velocidad del motor sin tener que apagarlo y prenderlo repetidamente.
Comparando estos 2 tipos de motores podemos observar que un aire acondicionado con inverter puede ahorrar hasta 30% más energía eléctrica que uno sin tecnología inverter. Esta razón, convierte a los equipos con tecnología Inverter en una inversión cuyos beneficios serían perceptibles a mediano y largo plazo.
Para poder entender esto más fácil vamos a imaginarnos a 2 personas corriendo:
- Uno correrá muy rápido y luego se detendrá a descansar y luego seguirá corriendo antes de detenerse a descansar de nuevo y repetirá esto unas cuantas veces mientras que la otra persona correrá un poco más lento pero nunca se detendrá a descansar, manteniendo siempre una velocidad constante.
- Al final, de los 2 corredores, el primero se sentirá más cansado que el segundo, ya que la persona utiliza más energía para iniciar a correr repetidamente.
Lo mismo ocurre con los motores que no cuentan con tecnología Inverter. Al estar prendiendo el motor repetidamente, se gasta más energía, generando un mayor consumo de electricidad.

Dramatización de: «Sin Tecnología Inverter» vs «Con Tecnología Inverter»
Por último te comentamos que la mayoría de los aires acondicionados en el mercado Mexicano y de América Latina funcionan con gas refrigerante Genetron AZ20 (R410A) el cual Quimobásicos maneja en toda su red de distribuidores a través de la región, ¡consulta con tu distribuidor Quimobásicos más cercano por su asesoría y para cotizar los mejores gases refrigerantes, equipos y complementos de instalación para cuando te toque trabajar con esta tecnología!
Sin más, agradecemos tu lectura. Si deseas comunicarte con nosotros envía tu correo a nuestro experto técnico Andrés Flores (andres.flores@cydsa.com) o síguenos en nuestras redes sociales las cuales te dejamos a continuación:
- LinkedIn: Quimobasicos
- Twitter/X: @Quimobasicos
- Facebook: Quimobasicos
- Youtube: @tvquimobasicos
En Quimobásicos nos interesa mucho tu opinión, ya que nos ayuda a brindarte un mejor servicio, por favor no dudes en hacernos saber cualquier comentario, critica, o sugerencia que tengas sobre la empresa, los productos Genetron, o el blog mismo. Para nosotros tu satisfacción es lo más importante.
Deslizamiento de Temperatura (Glide), ¿Por qué es tan importante conocerlo?

Todos los técnicos en refrigeración y aire acondicionado somos conscientes de la utilidad que tiene una tabla de presión vs temperatura a la hora de realizar nuestro trabajo, sin embargo, no todos dominamos la forma adecuada de leerlas.
Para ello en esta publicación nos daremos a la tarea de explicar de forma sencilla los conceptos de los famosos puntos de rocío y burbuja, y las diferencias entre los refrigerantes puros y las mezclas.
En los refrigerantes más comunes, la temperatura del serpentín se puede leer a partir de la escala de temperatura que muestra el indicador o calibrador, facilitando su medición, sin embargo, en los otros refrigerantes, la tarea se vuelve un poco más complicada debido al deslizamiento de temperatura.
El deslizamiento de temperatura del refrigerante determinará la forma que tomará la Tabla de Presión vs. Temperatura. Por lo tanto, es necesario revisar de manera rápida los principales conceptos básicos sobre el tema:
- El deslizamiento ocurre porque los diferentes gases que componen una mezcla de refrigerantes poseen diferentes temperaturas de ebullición, lo que genera que las composiciones de la fase líquida y vapor sean diferentes dentro de un sistema cerrado.
- Debido a las diferencias de temperatura, los gases más volubles se evaporan primero, generando que la temperatura de ebullición de la fase líquida vaya aumentando cada vez que se evapora más producto.
- La temperatura de evaporación promedio se ubica entre la temperatura en la que el refrigerante comienza a hervir a la entrada del dispositivo de expansión y en la que deja de hervir en la parte final del evaporador.
- El deslizamiento de temperatura promedio es usado para comparar el punto de ebullición en cada refrigerante y con ello obtener la misma temperatura promedio del serpentín.
- El deslizamiento de temperatura en el condensador ocurre de la misma manera que en el evaporador, pero el proceso es revertido a medida que los componentes se condensan en diferentes escalas en la entrada y la salida.
- El punto de burbuja es la temperatura donde aparece la primera burbuja de un líquido que comienza a hervir, mientras que el punto de rocío es la temperatura donde aparece la primera gota de líquido de un vapor que se empieza a condensar.
Para entender de manera gráfica los conceptos, se muestran a continuación dos diagramas que representan la evaporación/Condensación de un compuesto puro y una mezcla.
Para un componente puro, se puede observar un punto donde su vapor empieza a cambiar a estado líquido, o cuando ese líquido cambia a vapor. En lo que sucede este cambio, la temperatura se mantiene constante. Lo anterior es debido a que la energía requerida para realizar el cambio de una fase a otra se gasta en su totalidad evitando de esta forma los cambios en la energía interna del compuesto.
Como se puede observar en la gráfica para una mezcla zeotrópica, al ser primero el cambio de estado de los compuestos altamente volátiles, la temperatura durante el proceso va en aumento hasta llegar a la evaporación o condensación en su totalidad.
Sin más, agradecemos tu lectura. Si deseas comunicarte con nosotros envía tu correo a nuestro experto técnico Andrés Flores (andres.flores@cydsa.com) o síguenos en nuestras redes sociales las cuales te dejamos a continuación:
- LinkedIn: Quimobasicos
- Twitter/X: @Quimobasicos
- Facebook: Quimobasicos
- Youtube: @tvquimobasicos
En Quimobásicos nos interesa mucho tu opinión, ya que nos ayuda a brindarte un mejor servicio, por favor no dudes en hacernos saber cualquier comentario, critica, o sugerencia que tengas sobre la empresa, los productos Genetron, o el blog mismo. Para nosotros tu satisfacción es lo más importante.
Definición de conceptos en la refrigeración

Conceptos comunes en la refrigeración y su significado.
Los técnicos en el área de refrigeración y aire acondicionado estamos acostumbrados a trabajar con gran variedad de equipos y herramientas; sin embargo, muchos desconocemos las definiciones o significados de los términos que comúnmente utilizamos en el día a día de nuestro trabajo. En esta publicación nos encargaremos dar una definición a aquellas palabras que escuchamos en nuestro ámbito laboral y de las cuales en algunas ocasiones desconocemos su significado en su totalidad.
Estos son los términos y sus significados:
CALOR. Es la forma de energía generada por el movimiento de las moléculas de un cuerpo. A menor movimiento hay menor cantidad de calor, lo que se traduce en una menor temperatura. Por consiguiente, a mayor movimiento hay mayor calor en el cuerpo, provocando una mayor temperatura.
BTU (British Thermal Unit). Son una unidad inglesa que utilizamos para medir una cantidad de calor. Un BTU se define como la cantidad de calor necesaria para aumentar (o disminuir) en un grado Fahrenheit la temperatura de una libra de agua.
TONELADA DE REFRIGERACION. La tonelada de refrigeración es la capacidad de extracción de carga térmica de un equipo de refrigeración. Se define como la cantidad de calor necesaria para convertir una tonelada de hielo en agua en una hora. Una tonelada de refrigeración equivale a 12,000 BTU.
CALOR LATENTE. Es el calor necesario para producir un cambio de estado en una sustancia sin que exista un cambio de temperatura. El ejemplo por excelencia es el cambio de agua líquida a vapor de agua. Cuando el agua llega a 100°C empieza a convertirse en vapor sin aumentar su temperatura hasta que se termina de evaporar toda el agua.
CALOR SENSIBLE. Es el calor que hace que una sustancia aumente su temperatura. El calor sensible provoca un aumento o disminución de la temperatura mientras que el calor latente produce un cambio de estado (Líquido, vapor o sólido).
CONDENSACIÓN. Es un cambio de estado producido por la extracción de calor (enfriamiento) donde los gases pasan a estado líquido.
EVAPORACIÓN. Cambio de estado producido por la introducción de calor (calentamiento) a un líquido para que pase a vapor.
CONDUCCIÓN. Es la transferencia de calor a través de los sólidos. Ocurre cuando dos cuerpos con diferentes temperaturas están en contacto directo, provocando que el cuerpo con mayor temperatura entregue calor al cuerpo de menor temperatura hasta que su temperatura sea la misma.
CONVECCIÓN. Es la transferencia de calor a través de fluidos y sólidos. Por ejemplo, al usar un horno calentamos el aire que está en la cabina del horno, y el aire caliente se encarga de calentar la comida dentro del horno. La convección es la transferencia entre el aire y la comida.
CONVECCIÓN FORZADA. Es igual a la convección, pero con aceleramos la transferencia de calor con medios externos. Por ejemplo, al usar un abanico estamos forzando a que el aire fluya más rápido y absorba el calor de nuestro cuerpo a mayor velocidad.
RADIACIÓN. Es la transferencia de calor por medio de ondas electromagnéticas. Por ejemplo, los rayos solares poseen ondas electromagnéticas que calientan los objetos que se interponen en su camino. El pavimento en las carreteras es bombardeado por los rayos solares, provocando un aumento en su temperatura por la absorción del calor de las ondas de los rayos.
La importancia de hacer un vacío al sistema

La importancia de hacer un vacío al sistema
¿Por qué debemos hacer vacío a un sistema? ¿Qué tipo de bomba es la mejor? ¿Cuánto tiempo debo dejar que trabaje la bomba de vacío?, estas son sólo algunas de las preguntas que nos hacemos y que a veces no le damos importancia y en muchas ocasiones sólo “se purga la tubería” pensando que se ha hecho un excelente trabajo.
El vacío en el sistema nos da la tranquilidad y seguridad de que el equipo está totalmente deshidratado de algún contaminante que nos pudiera ocasionar un daño mayor, por ejemplo:
1. Alta temperatura de la descarga.
2. Calentamiento excesivo de la válvula de descarga.
3. Formación probable de hielo en el evaporador.
4. Degradación del lubricante.
5. Taponamiento en sistemas que contenga dispositivo del tipo tuvo capilar.
6. Daños severos del compresor.
Estos son sólo algunos posibles daños que podría ocasionar un deficiente proceso de vacío en nuestros sistemas refrigerantes, además en algunos casos, se utiliza compresores del tipo fraccionario, (para refrigeradores domésticos) para hacer esta actividad o aún peor, se utiliza el mismo compresor del sistema para realizar el vacío, lo que resulta en una posible ineficiencia en la operación de nuestro equipo posteriormente.
Como identificar un proceso de “Vacío Correcto”:
Para saber que llegamos al vacío correcto se requiere de un vacuómetro para medir el vacío de manera eficaz. El vacío correcto se alcanza midiendo, no por el tiempo que dejemos la bomba trabajando en el sistema, si no alcanzar la lectura correcta según el tipo de lubricante.
1. Para sistemas que utilizan lubricante Poliolester debe ser de 250 micrones de vacío.
2. Para sistemas que utilizan lubricante mineral o alquilbenceno debe ser de 500 micrones de vacío.
¿Qué tipo de bomba de vacío será correcta? Como lo menciona el manual “Buenas prácticas de refrigeración y aire acondicionado, edición 2006” se debe de escoger la bomba de acuerdo a las toneladas de refrigeración del sistema. Por cada cfm podemos evacuar de una manera efectiva 7 toneladas de refrigeración de un sistema, entonces aplicamos una sencilla fórmula:
(Toneladas de refrigeración del sistema / 7) = CFM requeridos para evacuar el sistema.
Esta práctica es un elemento importante en nuestro proceso de instalación, mantenimiento y reparación de nuestras unidades, por lo que los invitamos a seguir estos consejos para obtener mejores resultados el funcionamiento de los equipos y satisfacción de nuestros clientes.
Sin más, agradecemos tu lectura. Si deseas comunicarte con nosotros envía tu correo a nuestro experto técnico Andrés Flores (andres.flores@cydsa.com) o síguenos en nuestras redes sociales las cuales te dejamos a continuación:
- LinkedIn: Quimobasicos
- Twitter/X: @Quimobasicos
- Facebook: Quimobasicos
- Youtube: @tvquimobasicos
En Quimobásicos nos interesa mucho tu opinión, ya que nos ayuda a brindarte un mejor servicio, por favor no dudes en hacernos saber cualquier comentario, critica, o sugerencia que tengas sobre la empresa, los productos Genetron, o el blog mismo. Para nosotros tu satisfacción es lo más importante.
Los cuidados del aire acondicionado Automotriz



Los actuales sistemas de aire acondicionado no precisan de grandes mantenimientos. No obstante, es recomendable
visitar la agencia o bien un taller especializado al inicio de cada temporada del año (como servicio preventivo).
El sistema de aire acondicionado, es uno de los mayores logros técnicos alcanzados en aras de la confortabilidad a bordo de un vehículo. El objetivo del sistema es alcanzar de forma rápida y mantenida una temperatura en torno a los 21/25º C, con un funcionamiento parecido al de un frigorífico. El sistema de aire acondicionado lo que hace es extraer el calor del habitáculo y expulsarlo al exterior.
En diversas ocasiones hemos observado goteo de agua por debajo del vehículo cuando el sistema de aire acondicionado está funcionando. Esto es completamente normal, debido a la condensación del agua en el exterior de las tuberías.
Tips para el mejor aprovechamiento del aire acondicionado
- Abrir los cristales al poner en marcha el automóvil, para sacar el aire caliente y posteriormente cerrarlos para encender el aire acondicionado.
- Mantenga el automóvil cerrado mientras está funcionando el aire acondicionado.
- No encender el aire acondicionado, si no es necesario, una mejor opción es encender sólo el ventilador.
- Llevar a cabo limpieza general del equipo, quitar el polvo y el moho.
- Revisar que no estén rotos o cuarteados todos los empaques (hules) de las puertas y las ventanas del automóvil.

- Eliminar la basura que se encuentre en la base del parabrisas, ya que se obstruye la entrada del aire exterior.
- No obstruir las salidas del aire acondicionado del tablero, (salida al parabrisas y salidas frontales) ni la salida hacia al piso, para un mejor confort de los pasajeros.
- La temperatura de salida del aire está entre 10 y 15°C, por lo que las rejillas siempre deben orientarse de forma que el aire se difunda por todo el automóvil, y no directamente hacia los ocupantes
- No enfríe en exceso, hay que tener en cuenta que por cada grado que se le exija al aire acondicionado por debajo de los 25°C, estará consumiendo aproximadamente un 8% más de energía.
- Debe usar su equipo de aire acondicionado por lo menos una vez a la semana (inclusive en el invierno) como mínimo por 2 minutos, lo anterior tiene como objetivo hacer circular el aceite en el compresor para mantener siempre lubricado el equipo, ya que si no se realiza este encendido se produce una falla del compresor, y el equipo no funcionará.
![]() |
![]() |
|---|
El objetivo de darle mantenimiento al equipo de aire acondicionado, es mantenerlo en óptimas condiciones y así minimizar fallas más costosas para el usuario.
Normalmente, un mantenimiento preventivo o de rutina consiste en:

- La limpieza del evaporador (pieza usualmente de aluminio y costosa)
- Cambio del filtro secador (botella deshidratadora que procura recolectar o absorber la humedad interna del producto líquido refrigerante)
- Reemplazo de la válvula de expansión (controla el flujo de refrigerante hacia el evaporador)
- Cambio de los sellos (anillos de caucho)
- Hacer un vacío al sistema que debe durar por lo menos 40 minutos.
- Agregar aceite al compresor.
- Finalmente cargarlo con su respectivo refrigerante el cual puede ser R-12 (CFC) ó R-134 (HFC). Un sistema que le hace falta 10% de refrigerante, costará 20% más en su operación.
Sin un mantenimiento regular, el aire acondicionado pierde aproximadamente 5% de su eficiencia original por cada año de operación, si se le da un mantenimiento adecuado se podrá mantener el 95% de la eficiencia original.
Sin más, agradecemos tu lectura. Si deseas comunicarte con nosotros envía tu correo a nuestro experto técnico Andrés Flores (andres.flores@cydsa.com) o síguenos en nuestras redes sociales las cuales te dejamos a continuación:
- LinkedIn: Quimobasicos
- Twitter/X: @Quimobasicos
- Facebook: Quimobasicos
- Youtube: @tvquimobasicos
En Quimobásicos nos interesa mucho tu opinión, ya que nos ayuda a brindarte un mejor servicio, por favor no dudes en hacernos saber cualquier comentario, critica, o sugerencia que tengas sobre la empresa, los productos Genetron, o el blog mismo. Para nosotros tu satisfacción es lo más importante.




