Archivo del sitio

Guía rápida de conceptos de Refrigeración (Cuarta Parte)

Conceptos de refrigeración cuarta parte: Líneas de Refrigerante
A lo largo de diferentes blogs, hemos revisado varios conceptos teуricos utilizados en el бrea de refrigeración y aire acondicionado; también revisamos el uso y descripción de los compresores, condensadores, y los dispositivos de control de flujo. Sin embargo, las partes de un sistema de refrigeración no se encuentran conectadas una a lado de la otra, más bien se encuentran unidas a través de un sistema de tuberías que reciben el nombre de líneas de refrigerante.

La línea de refrigerante, como su nombre indica, es la encargada de la conducción del refrigerante de una parte del sistema a la otra. El refrigerante lo podemos encontrar en estado líquido o vapor dependiendo de la sección en que se encuentre del sistema completo de refrigeración. En la mayorнa de los casos, las líneas de refrigerante están construidas por tubos de cobre rígido, aunque en algunos países se permite el uso de tubos de cobre flexibles en el extremo de la unidad condensadora y en los accesorios.

Los sistemas de refrigeración cuentan con 3 líneas principales:

– Líneas de líquido
En esta línea el refrigerante y el aceite se mezclan adecuadamente. Aun cuando el líquido se mueva lentamente y existan trampas en la línea el aceite nunca quedará atrapado. Debe existir suficiente presión en la línea para evitar que el dispositivo de control de flujo trabaja incorrectamente. Para evitar una caída de presión excesiva se recomienda sub enfriar el líquido.

– Líneas de succión.

Existen problemas de diseсo, principalmente cuando se utilizan compresores reciprocantes (los que utilizan cilindros y pistones para comprimir). Esta debe tener el diámetro apropiado para compensar la pérdida de presión ocasionada cuando el sistema trabaja a su máxima capacidad. Esta línea debe ser capaz de regresar el aceite del evaporador al compresor cuando el sistema traba a velocidades lentas.

– Líneas de descarga.
Conocida como línea de gas caliente, es una línea con pocos problemas en los sistemas que tienen el condensador integrado. Esta linea se debe diseсar de tal manera que no retenga el aceite del compresor.

Todas las tuberías de que componen las líneas de refrigerante deben ser del tamaño correcto para la cantidad de líquido o vapor a las que fueron diseсadas, incluyendo el diámetro correcto, la longitud y el calibre de la tuberнa. Esto es de vital importancia ya que un mal diseсo provoca una pérdida de presión del refrigerante en las líneas, y es perjudicial para el sub enfriamiento de la línea del líquido. Esto ocasiona que la válvula de expansión no realice adecuadamente su trabajo. También existen problemas con el compresor y el evaporador cuando hay bajas presiones en el sistema.


Si tienes comentarios al respecto de la siguiente entrada o si te parece útil te agradecemos que nos comentes en este tu Blog, nuestra página de Facebook o en la cuenta de Twitter que en Quimobásicos ponemos a tu disposición.

¿Tienes alguna duda adicional que no hayamos resuelto en esta publicación? Por favor escríbela en los comentarios al final de esta publicación, o si lo prefieres, contáctenos en nuestras redes sociales: Facebook, Twitter, Google+ y YouTube.

En Quimobásicos nos interesa mucho tu opinión, ya que nos ayuda a brindarte un mejor servicio, por favor no dudes en hacernos saber cualquier comentario, critica, o sugerencia que tengas sobre la empresa, los productos Genetron, o el blog mismo.

Guía Rápida de Conceptos de Refrigeración (tercera parte)

Conceptos de refrigeración tercera parte: Dispositivos de control de flujo

En archivos anteriores hemos revisado algunos de los conceptos esenciales para entender el amplio ámbito de la refrigeración. Para complementar la información que ya hemos aprendido, les traemos esta tercera parte de conceptos de refrigeración. Cabe recalcar que en esta sección nos centraremos definir los diferentes tipos de dispositivos de control de flujo.

Llámese un dispositivo de control de flujo a aquellos componentes del sistema de refrigeración encargados de regular el flujo del refrigerante líquido en los evaporadores. Sin conocidos por dividir el sistema de refrigeración, al igual que el compresor, en la parte de alta presión y de baja presión.

Diferentes tipos de dispositivos de control de flujo:

Tubo capilar. Este dispositivo de control es el más básico de todos, y está formado por un pequeño tubo cuya perforación a lo largo de su interior es muy pequeña. Este tipo de dispositivos solo se encuentran en equipos que poseen un gabinete, y en sistemas inundados (cuyo 75% del volumen está lleno de refrigerante). Este tipo de dispositivo no se considera una válvula debido a que no se puede ajustar, y no se puede controlar de otra forma más que con el diámetro interior del tubo. Por lo tanto, el tamaño del tuvo debe estar adecuado al sistema específico.

Válvula termostática de expansión (VTE). Este dispositivo de control es el más utilizado en los sistemas de refrigeración. Funciona a través de la temperatura y la presión. La abertura en la válvula controla el flujo del refrigerante, mientras que una aguja controla la velocidad del flujo mediante un bulbo que siempre contiene líquido. Para esto, se mide y compara la temperatura del compresor con la del bulbo y la aguja abrirá la válvula dependiendo de las necesidades del evaporador. A mayor temperatura del evaporador, mayor será la abertura de la válvula.

Resultado de imagen para Válvula automática de expansión

Válvula automática de expansión (VAE). Este tipo de dispositivo controla el flujo del refrigerante de la línea del líquido manteniendo la presión constante en el evaporador. Este sistema trabaja muy similar a la VTE, pero en lugar de controlar la temperatura controla la presión del evaporador. La válvula no permitirá que fluya líquido al compresor a menos que se reduzca la presión del mismo.

Válvula termoeléctrica de expansión (VTEE). Este dispositivo consta de dos partes, la válvula que controla el flujo y un sensor eléctrico que mide el calor por medio de termistores. El termistor se define como un conductor eléctrico que cambia su conductividad (capacidad para conducir electricidad) cuando existe un cambio en la temperatura. A mayor temperatura, los termistores conducen mayor electricidad. Cuando el evaporador tiene una temperatura elevada los termistores aumentan el voltaje provocando que el sensor interprete el incremento en el voltaje como un aumento en la temperatura, incitando a que la válvula se abra y permita un mayor flujo de refrigerante.

De manera resumida, podemos decir que los dispositivos de control de flujo tienen la responsabilidad de evitar que llegue líquido al compresor, evitando daños en el mismo.

 


Si tienes comentarios al respecto de la siguiente entrada o si te parece útil te agradecemos que nos comentes en este tu Blog, nuestra página de Facebook o en la cuenta de Twitter que en Quimobásicos ponemos a tu disposición.

¿Tienes alguna duda adicional que no hayamos resuelto en esta publicación? Por favor escríbela en los comentarios al final de esta publicación, o si lo prefieres, contáctenos en nuestras redes sociales: Facebook, Twitter, Google+ y YouTube.

En Quimobásicos nos interesa mucho tu opinión, ya que nos ayuda a brindarte un mejor servicio, por favor no dudes en hacernos saber cualquier comentario, critica, o sugerencia que tengas sobre la empresa, los productos Genetron, o el blog mismo.

Ventajas de los sistemas de AC Inverter


Ventajas de los sistemas de AC Inverter

Seguramente que hemos escuchado más de una vez que un aire acondicionado Inverter consume menos energía que un aire acondicionado convencional, sin embargo, muchos desconocemos cuales son las ventajas que tienen este tipo de equipos.

¿Por qué se dice que un aire acondicionado Inverter gasta menos electricidad que uno convencional? El motivo principal está en el componente de mayor consumo energético: “El compresor”, y en la tecnología de su tarjeta electrónica.

En los aires acondicionados convencionales el compresor siempre se encuentra funcionando al 100% de su capacidad. Por ejemplo, si encendemos un aire acondicionado convencional en temporada de verano y ajustamos la temperatura a 23°C y la temperatura del área externa se encuentra en 30°C, el sistema convencional encenderá el compresor a su máxima potencia al momento comenzar a trabajar, y se apagara cuando llegue a la temperatura que se ajustó, en este caso de 23°C. Al momento de subir de nuevo la temperatura interior, el compresor volverá a arrancar al 100% de su capacidad hasta volver a llegar a la temperatura deseada. Este proceso se repetirá mientras el aire acondicionado se encuentre encendido. Es importante recordar que los mayores picos de consumos energéticos en un sistema de refrigeración se producen al momento de encender el compresor.

¿Cómo funciona una máquina de aire acondicionado Inverter para ser más eficiente?

El aire acondicionado Inverter es capaz de controlar la potencia del compresor, a través de una tarjeta electrónica inteligente que controla los paros y arranques del compresor, que son los que más demanda energía generan. Esta tarjeta o control mantendrá el equipo funcionando hasta alcanzar la temperatura deseada en el cuarto y el equipo no se apagará, si no que mantendrá una velocidad menor. Esto ayudad a evitar los picos de consumo energético que se generan con los arranques abruptos del compresor.

De esta manera el compresor ahorra en un día de funcionamiento continuo muchos arranques y paros, produciendo un ahorro en un año de entre el 30 y el 60% de energía eléctrica. Otra ventaja de los equipos de aire acondicionado Inverter es su disminución del ruido en comparación con los equipos convencionales. Dada la nueva tecnología, los compresores de un aire acondicionado Inverter alcanza menos decibeles que el de una maquina convencional

Sin embargo, muchos clientes consideran que la diferencia de precio entre un equipo Inverter y uno convencional es muy alta. Y llegan a esta conclusión antes de considerar que esa cantidad de dinero se pagará sola con el ahorro de energía reflejado en el recibo de la luz.

Un tema importante saber que hoy en día no solo los climas cuentas con esta nueva tecnología, también podemos encontrar, Refrigeradores domésticos, Equipos de Refrigeración media / baja temperatura compresor como moto-variador, entre varios equipos más.


Si tienes comentarios al respecto de la siguiente entrada o si te parece útil te agradecemos que nos comentes en este tu Blog, nuestra página de Facebook o en la cuenta de Twitter que en Quimobásicos ponemos a tu disposición.

¿Tienes alguna duda adicional que no hayamos resuelto en esta publicación? Por favor escríbela en los comentarios al final de esta publicación, o si lo prefieres, contáctenos en nuestras redes sociales: Facebook, Twitter, Google+ y YouTube.

En Quimobásicos nos interesa mucho tu opinión, ya que nos ayuda a brindarte un mejor servicio, por favor no dudes en hacernos saber cualquier comentario, critica, o sugerencia que tengas sobre la empresa, los productos Genetron, o el blog mismo.

Guía Práctica de uso del Eco Flush 1233zd Presurizado, ¿en que varía contra el HCFC-141b este producto de limpieza de última generación de Quimobásicos?

Guía de limpieza: Quimobásicos Eco® Flush 1233zd

Ante la salida del R-141b, utilizado como el principal agente de limpieza en los circuitos de refrigeración, el mercado evolucionó al uso de productos más amigables con el ambiente como el Quimobásicos Eco® Flush 1233zd presurizado. Sin embargo, ante todos estos cambios nos surge una duda: ¿Se utilizan de igual manera los productos nuevos en comparación con el R-141b?  

El Quimobásicos Eco® Flush 1233zd presurizado posee características prácticamente iguales al R-141b tanto en poder de limpieza como en el modo de uso. A continuación, se mostrará una pequeña guía en el uso del Quimobásicos Eco® Flush 1233zd:

Guía de Uso del Quimobásicos Eco® Flush 1233zd presurizado

¿Cuándo es necesario realizar una limpieza de un sistema de refrigeración y aire acondicionado?

  • En el caso de que se queme el compresor del sistema.
  • Cuando ocurra una inundación de aceite.
  • Cuando se realice un barrido del aceite en el proceso de cambio de refrigerante.

¿Qué precauciones debemos tomar al utilizar al realizar la limpieza?

  • Evite quitar la soldadura de las tuberías del sistema con refrigerante quemado en su interior.
  • Realizar la limpieza procurando retirar el compresor, el filtro deshidratador, y el capilar o VTE.
  • Tenga precaución con el refrigerante que saldrá del sistema, ya que este se puede encontrar a alta presión y con un olor muy fuerte causado por el daño en el embobinado del motor.

Procedimiento para la limpieza del sistema:

1- Se debe retirar el refrigerante del sistema. Esto se puede hacer por el apéndice del compresor o hacer una pequeña ruptura en tubería de cobre. (Debemos tener cuidado los vapores que salen del sistema).

2- Siguiendo las buenas prácticas en refrigeración, proseguimos a desinstalar el compresor y filtro deshidratador.

3- Al realizar la limpieza, debemos asegurarnos que el flujo del limpiador vaya a contra flujo, es decir, en sentido contrario de ciclo de refrigeración.

4- Soldar apéndices en el evaporador y condensador para el lavado a contra flujo.

  • Instalar el apéndice de servicio en la línea de succión del sistema donde se conecta el compresor y extraer el limpiador por el capilar.
  • Instalar apéndice donde se retiró el filtro deshidratador y extraer el limpiador por la línea de descarga del compresor.

5 – Debemos procurar conectar las mangueras de los manómetros de la siguiente manera:

  • La manguera de baja se conecta al contenedor del Quimobásicos Eco® Flush 1233zd presurizado.
  • La manguera de servicio se conecta a la sección del sistema que se va a lavar.
  • La manguera de alta se conecta al tanque de nitrógeno, procurando ajustar la presión a 80 PSI.

6- Abrir la válvula de baja del Manifold para dejar pasar introducir el producto al sistema (Debemos recordar que el contenedor del producto se debe mantener invertido para inyectar únicamente líquido al sistema).

7- Proseguimos a cerrar la válvula de baja y abrir la válvula de alta para introducir el nitrógeno al sistema. El nitrógeno tiene la función de barrer el producto, que se introdujo en el paso anterior, junto con las la suciedad e impurezas del sistema.  

8- Es importante recordar que debemos colocar un recipiente a la salida del sistema donde podamos depositar el Quimobásicos Eco® Flush 1233zd que sale de la sección a la que se está realizando la limpieza.

9- Repetir los pasos anteriores hasta que el Quimobásicos Eco® Flush 1233zd introducido al sistema salga limpio.

10- Volver a instalar todos los componentes del sistema, procurando siempre usar un filtro deshidratador nuevo.

¿Tienes alguna duda adicional que no hayamos resuelto en esta publicación? ¿Te agradaría algún tema relacionado o que ahonde en un tema similar? Escribe por favor en los comentarios al Final de esta publicación, o si lo prefieres contáctenos en nuestros contactos oficiales de Facebook, Twitter, Google Plus o canal de YouTube.

En Quimobásicos nos interesa mucho tu opinión, ya que nos ayuda a brindarte un mejor servicio, por favor no dudes en hacernos saber cualquier comentario, critica o sugerencia que tengas sobre la empresa, los productos de nuestras marcas Solstice® y Genetron®, o en el blog mismo.

Comprendiendo el deslizamiento de temperatura del refrigerante

Importancia del deslizamiento de temperatura y conceptos relacionados.

Todos los técnicos en refrigeración son conscientes de la utilidad que tiene una tabla de presión vs temperatura a la hora de realizar su trabajo, sin embargo, no todos entendemos la forma correcta de leerlas. Para ello explicaremos los conceptos de los famosos puntos de rocío y burbuja, y las diferencias entre los refrigerantes puros y las mezclas.

En los refrigerantes más comunes, la temperatura del serpentín se puede leer a partir de la escala de temperatura que muestra el indicador o calibrador, facilitando su medición, sin embargo, en los otros refrigerantes, la tarea se vuelve un poco más complicada debido al deslizamiento de temperatura.

El deslizamiento de temperatura del refrigerante determinará la forma que tomará la Tabla de Presión vs. Temperatura. Por lo tanto, es necesario revisar de manera rápida los principales conceptos básicos sobre el tema:

  • El deslizamiento ocurre porque los diferentes gases que componen una mezcla de refrigerantes poseen diferentes temperaturas de ebullición, lo que genera que las composiciones de la fase líquida y vapor sean diferentes dentro de un sistema cerrado.
  • Debido a las diferencias de temperatura, los gases más volátiles se evaporan primero, generando que la temperatura de ebullición de la fase líquida vaya aumentando cada vez que se evapora más producto.
  • La temperatura de evaporación promedio se ubica entre la temperatura en la que el refrigerante comienza a hervir a la entrada del dispositivo de expansión y en la que deja de hervir en la parte final del evaporador.
  • El deslizamiento de temperatura promedio es usado para comparar el punto de ebullición en cada refrigerante y con ello obtener la misma temperatura promedio del serpentín.
  • El deslizamiento de temperatura en el condensador ocurre de la misma manera que en el evaporador, pero el proceso es revertido a medida que los componentes se condensan en diferentes escalas en la entrada y la salida.
  • El punto de burbuja es la temperatura donde aparece la primera burbuja de un líquido que comienza a hervir, mientras que el punto de rocío es la temperatura donde aparece la primera gota de líquido de un vapor que se empieza a condensar.

Para entender de manera gráfica los conceptos, se muestran a continuación dos diagramas que representan la evaporación/Condensación de un compuesto puro y una mezcla.

Para un componente puro, solo observamos un punto donde un vapor comienza a cambiar a estado líquido; o un líquido comienza a cambiar a vapor. Mientras ocurre el cambio de estado, la temperatura se mantiene constate. Esto es debido a que la energía requerida para realizar el cambio de fase se consume en su totalidad, evitando cambios en la energía interna del compuesto.

Como podemos observar en la gráfica para una mezcla zeotrópica, al ocurrir primero el cambio de estado de los compuestos más volátiles, la temperatura a lo largo del cambio de fase empieza a va en aumento hasta que se ocurre la evaporación/condensación en su totalidad.

Si tienes comentarios al respecto de esta publicación o si te parece útil te agradecemos que nos comentes en este tu Blog, a nuestro correo electrónico de contacto, a nuestra página de Facebook o en la cuenta de Twitter que en Quimobásicos ponemos a tu disposición.

 

 

A %d blogueros les gusta esto: