Archivos Mensuales: septiembre 2024

Deslizamiento de Temperatura (Glide), ¿Por qué es tan importante conocerlo?

05-Posts-blog

Todos los técnicos en refrigeración y aire acondicionado somos conscientes de la utilidad que tiene una tabla de presión vs temperatura a la hora de realizar nuestro trabajo, sin embargo, no todos dominamos la forma adecuada de leerlas.

Para ello en esta publicación nos daremos a la tarea de explicar de forma sencilla los conceptos de los famosos puntos de rocío y burbuja, y las diferencias entre los refrigerantes puros y las mezclas.

En los refrigerantes más comunes, la temperatura del serpentín se puede leer a partir de la escala de temperatura que muestra el indicador o calibrador, facilitando su medición, sin embargo, en los otros refrigerantes, la tarea se vuelve un poco más complicada debido al deslizamiento de temperatura.

El deslizamiento de temperatura del refrigerante determinará la forma que tomará la Tabla de Presión vs. Temperatura. Por lo tanto, es necesario revisar de manera rápida los principales conceptos básicos sobre el tema:

  • El deslizamiento ocurre porque los diferentes gases que componen una mezcla de refrigerantes poseen diferentes temperaturas de ebullición, lo que genera que las composiciones de la fase líquida y vapor sean diferentes dentro de un sistema cerrado.
  • Debido a las diferencias de temperatura, los gases más volubles se evaporan primero, generando que la temperatura de ebullición de la fase líquida vaya aumentando cada vez que se evapora más producto.
  • La temperatura de evaporación promedio se ubica entre la temperatura en la que el refrigerante comienza a hervir a la entrada del dispositivo de expansión y en la que deja de hervir en la parte final del evaporador.
  • El deslizamiento de temperatura promedio es usado para comparar el punto de ebullición en cada refrigerante y con ello obtener la misma temperatura promedio del serpentín.
  • El deslizamiento de temperatura en el condensador ocurre de la misma manera que en el evaporador, pero el proceso es revertido a medida que los componentes se condensan en diferentes escalas en la entrada y la salida.
  • El punto de burbuja es la temperatura donde aparece la primera burbuja de un líquido que comienza a hervir, mientras que el punto de rocío es la temperatura donde aparece la primera gota de líquido de un vapor que se empieza a condensar.

Para entender de manera gráfica los conceptos, se muestran a continuación dos diagramas que representan la evaporación/Condensación de un compuesto puro y una mezcla.

Para un componente puro, se puede observar un punto donde su vapor empieza a cambiar a estado líquido, o cuando ese líquido cambia a vapor. En lo que sucede este cambio, la temperatura se mantiene constante. Lo anterior es debido a que la energía requerida para realizar el cambio de una fase a otra se gasta en su totalidad evitando de esta forma los cambios en la energía interna del compuesto.

Como se puede observar en la gráfica para una mezcla zeotrópica, al ser primero el cambio de estado de los compuestos altamente volátiles, la temperatura durante el proceso va en aumento hasta llegar a la evaporación o condensación en su totalidad.

Sin más, agradecemos tu lectura. Si deseas comunicarte con nosotros envía tu correo a nuestro experto técnico Andrés Flores (andres.flores@cydsa.com) o síguenos en nuestras redes sociales las cuales te dejamos a continuación:

En Quimobásicos nos interesa mucho tu opinión, ya que nos ayuda a brindarte un mejor servicio, por favor no dudes en hacernos saber cualquier comentario, critica, o sugerencia que tengas sobre la empresa, los productos Genetron, o el blog mismo. Para nosotros tu satisfacción es lo más importante.

ALTERNATIVA PARA AC SISTEMAS TIPO MINI SPLIT

04-8Nov-Posts-blog

3D render of a grassy globe with a tree and clouds

3D render of a grassy globe with a tree and clouds

Como ya sabemos, en México existe un plan de eliminación de los HCFC el cual considera que los fabricantes y comercializadores cuenten con abasto de este producto hasta el año 2030, esto dará la oportunidad de emigrar de refrigerantes HCHF como el R-22 hacia alternativas de mínimo potencial de calentamiento global y que no se consideren dañinos a la capa de ozono.

Entendiendo la necesidad de algunas empresas y consumidores que requieren la sustitución del R-22 de sus equipos (en oficinas: paquetes, divididos, mini-split; en el sector industrial: chiller de agua fría, etcétera), hoy te hablamos del Genetron 422D, la alternativa más fácil y sencilla de sustituir al R22.

En Quimobásicos te presentamos este sustituto del R-22 en su aplicación para aires acondicionados como la más práctica y fácil de reemplazar, además mantiene unas capacidades y eficiencias muy similares al R-22.

shutterstock_238720363Enfocándonos en sistemas mini-split, el Genetron 422D es un cambio fácil y práctico en el que el equipo no sufre pérdida de capacidad significativa (varía sólo un 5%). Este refrigerante tiene la oportunidad de ser un Drop-In, por lo que sólo será necesario el cambio de refrigerante, dado que el Genetron 422D trabaja con el mismo lubricante alquilbenceno del equipo. Además de lo anterior, con Genetron 422D sólo es necesario cargar 85% de lo recuperado del sistema (R 22), por ejemplo: si se recuperó 1 kg de R-22, la carga con tanque-gas-422d-legalesel Genetron 422D será de 850 gramos.

Recuerda el Genetron 422D solo debe cargarse en forma de líquido, para ello será necesario invertir el cilindro, extraer, y cargar solo líquido al sistema. Te recomendamos que te asegures de que las presiones de trabajo, así como el amperaje, temperatura, e inyección de aíre sean lo mismo.

R 22 R 422D R 422D
Temperatura Presión Presión de liquido Presión de vapor
(°C) (psig) (psig) (psig)
-5 46.5 52.2 44.1
0 57.5 64.1 55.2
5 70 77.5 67.9
10 84.1 92.6 82.2
40 207.7 224.8 210.8
45 236.1 255.1 240.9

CONSIDERACIONES ADICIONALES:

  • Genetron 422D se debe cargar por peso.
  • Se recomienda instalar una válvula reguladora.
  • Hacer un vacío de 500 micrones.
  • Documentar la operación del sistema antes de hacer cualquier cambio.

Sin más, agradecemos tu lectura. Si deseas comunicarte con nosotros envía tu correo a nuestro experto técnico Andrés Flores (andres.flores@cydsa.com) o síguenos en nuestras redes sociales las cuales te dejamos a continuación:

En Quimobásicos nos interesa mucho tu opinión, ya que nos ayuda a brindarte un mejor servicio, por favor no dudes en hacernos saber cualquier comentario, critica, o sugerencia que tengas sobre la empresa, los productos Genetron, o el blog mismo. Para nosotros tu satisfacción es lo más importante.

Definición de conceptos en la refrigeración

03-25May-Posts-blog

Conceptos comunes en la refrigeración y su significado.

Los técnicos en el área de refrigeración y aire acondicionado estamos acostumbrados a trabajar con gran variedad de equipos y herramientas; sin embargo, muchos desconocemos las definiciones o significados de los términos que comúnmente utilizamos en el día a día de nuestro trabajo. En esta publicación nos encargaremos dar una definición a aquellas palabras que escuchamos en nuestro ámbito laboral y de las cuales en algunas ocasiones desconocemos su significado en su totalidad.

Estos son los términos y sus significados:

CALOR. Es la forma de energía generada por el movimiento de las moléculas de un cuerpo. A menor movimiento hay menor cantidad de calor, lo que se traduce en una menor temperatura. Por consiguiente, a mayor movimiento hay mayor calor en el cuerpo, provocando una mayor temperatura.

BTU (British Thermal Unit). Son una unidad inglesa que utilizamos para medir una cantidad de calor. Un BTU se define como la cantidad de calor necesaria para aumentar (o disminuir) en un grado Fahrenheit la temperatura de una libra de agua.

TONELADA DE REFRIGERACION. La tonelada de refrigeración es la capacidad de extracción de carga térmica de un equipo de refrigeración. Se define como la cantidad de calor necesaria para convertir una tonelada de hielo en agua en una hora. Una tonelada de refrigeración equivale a 12,000 BTU.

CALOR LATENTE. Es el calor necesario para producir un cambio de estado en una sustancia sin que exista un cambio de temperatura. El ejemplo por excelencia es el cambio de agua líquida a vapor de agua. Cuando el agua llega a 100°C empieza a convertirse en vapor sin aumentar su temperatura hasta que se termina de evaporar toda el agua.

CALOR SENSIBLE. Es el calor que hace que una sustancia aumente su temperatura. El calor sensible provoca un aumento o disminución de la temperatura mientras que el calor latente produce un cambio de estado (Líquido, vapor o sólido).

CONDENSACIÓN. Es un cambio de estado producido por la extracción de calor (enfriamiento) donde los gases pasan a estado líquido.

EVAPORACIÓN. Cambio de estado producido por la introducción de calor (calentamiento) a un líquido para que pase a vapor.

CONDUCCIÓN. Es la transferencia de calor a través de los sólidos. Ocurre cuando dos cuerpos con diferentes temperaturas están en contacto directo, provocando que el cuerpo con mayor temperatura entregue calor al cuerpo de menor temperatura hasta que su temperatura sea la misma.

CONVECCIÓN. Es la transferencia de calor a través de fluidos y sólidos. Por ejemplo, al usar un horno calentamos el aire que está en la cabina del horno, y el aire caliente se encarga de calentar la comida dentro del horno. La convección es la transferencia entre el aire y la comida.

CONVECCIÓN FORZADA. Es igual a la convección, pero con aceleramos la transferencia de calor con medios externos. Por ejemplo, al usar un abanico estamos forzando a que el aire fluya más rápido y absorba el calor de nuestro cuerpo a mayor velocidad.

RADIACIÓN. Es la transferencia de calor por medio de ondas electromagnéticas. Por ejemplo, los rayos solares poseen ondas electromagnéticas que calientan los objetos que se interponen en su camino. El pavimento en las carreteras es bombardeado por los rayos solares, provocando un aumento en su temperatura por la absorción del calor de las ondas de los rayos.

Lee el resto de esta entrada

La importancia de hacer un vacío al sistema

02-27Sept-Posts-blog

La importancia de hacer un vacío al sistema

¿Por qué debemos hacer vacío a un sistema? ¿Qué tipo de bomba es la mejor? ¿Cuánto tiempo debo dejar que trabaje la bomba de vacío?, estas son sólo algunas de las preguntas que nos hacemos y que a veces no le damos importancia y en muchas ocasiones sólo “se purga la tubería” pensando que se ha hecho un excelente trabajo.

El vacío en el sistema nos da la tranquilidad y seguridad de que el equipo está totalmente deshidratado de algún contaminante que nos pudiera ocasionar un daño mayor, por ejemplo:

1. Alta temperatura de la descarga.
2. Calentamiento excesivo de la válvula de descarga.
3. Formación probable de hielo en el evaporador.
4. Degradación del lubricante.
5. Taponamiento en sistemas que contenga dispositivo del tipo tuvo capilar.
6. Daños severos del compresor.

Estos son sólo algunos posibles daños que podría ocasionar un deficiente proceso de vacío en nuestros sistemas refrigerantes, además en algunos casos, se utiliza compresores del tipo fraccionario, (para refrigeradores domésticos) para hacer esta actividad o aún peor, se utiliza el mismo compresor del sistema para realizar el vacío, lo que resulta en una posible ineficiencia en la operación de nuestro equipo posteriormente.

Como identificar un proceso de “Vacío Correcto”:
Para saber que llegamos al vacío correcto se requiere de un vacuómetro para medir el vacío de manera eficaz. El vacío correcto se alcanza midiendo, no por el tiempo que dejemos la bomba trabajando en el sistema, si no alcanzar la lectura correcta según el tipo de lubricante.

1. Para sistemas que utilizan lubricante Poliolester debe ser de  250 micrones de vacío.
2. Para sistemas que utilizan lubricante mineral o alquilbenceno  debe ser de 500 micrones de vacío.

¿Qué tipo de bomba de vacío será correcta? Como lo menciona el manual “Buenas prácticas de refrigeración y aire acondicionado, edición 2006” se debe de escoger la bomba de acuerdo a las toneladas de refrigeración del sistema. Por cada cfm podemos evacuar de una manera efectiva 7 toneladas de refrigeración de un sistema, entonces aplicamos una sencilla fórmula:
(Toneladas de refrigeración del sistema / 7) = CFM requeridos para evacuar el sistema.

Esta práctica es un elemento importante en nuestro proceso de instalación, mantenimiento y reparación de nuestras unidades, por lo que los invitamos a seguir estos consejos para obtener mejores resultados el funcionamiento de los equipos y satisfacción de nuestros clientes.

Sin más, agradecemos tu lectura. Si deseas comunicarte con nosotros envía tu correo a nuestro experto técnico Andrés Flores (andres.flores@cydsa.com) o síguenos en nuestras redes sociales las cuales te dejamos a continuación:

En Quimobásicos nos interesa mucho tu opinión, ya que nos ayuda a brindarte un mejor servicio, por favor no dudes en hacernos saber cualquier comentario, critica, o sugerencia que tengas sobre la empresa, los productos Genetron, o el blog mismo. Para nosotros tu satisfacción es lo más importante.

Bomba de Calor ¿Por qué ahorra energía?

01-12Dic-Posts-blog

¿Qué es una bomba de calor? Una bomba de calor es un sistema que “genera” calor sin la necesidad de realmente generar calor. Tal vez esto suene como algo que no tiene sentido, pero es muy simple:

Existe calor en el aire de todos los lugares. Cuando la temperatura es alta, la cantidad de calor en el aire es mucha, cuando la temperatura es baja, la cantidad de calor es poca. Pero siempre hay calor.

pic_what_2

Lo que hace una bomba de calor es que literalmente agarra el calor de afuera y lo transfiere adentro, esto hace que no se tenga que utilizar mucha electricidad, lo que genera un ahorro de energía.

 Ya que entendimos que es y que hace una bomba de calor, ahora vamos a aprender ¿Cómo funciona?

  • pic_heat_transferEl calor es transferido por los refrigerantes

Como ya saben, el aire acondicionado utiliza refrigerante para transferir el calor de adentro y mandarlo afuera. Una bomba de calor hace exactamente lo mismo, pero al revés. La bomba de calor utiliza el refrigerante para transferir el calor de afuera hacia adentro, y de esta manera calentar el aire de la habitación.


  • Por naturaleza, el calor llena la habitación fría.

Lpic_spoonas leyes de la física nos dicen que el calor siempre se va a mover hacía una habitación fría. Tú puedes comprobar esto con un experimento sencillo desde tu casa. Simplemente calienta una cuchara y ponla encima de una cuchara fría, verás que en poco tiempo el calor se va a transferir a la cuchara fría y se va a calentar también. La transferencia de calor se detiene cuando la temperatura de las dos cucharas sean las mismas.

En el siguiente diagrama podemos observar claramente cómo se transfiere el calor de afuera hacía adentro:

6ae7433d-db2a-4e50-9723-bc67883be811


Sin más, agradecemos tu lectura. Si deseas comunicarte con nosotros envía tu correo a nuestro experto técnico Andrés Flores (andres.flores@cydsa.com) o síguenos en nuestras redes sociales las cuales te dejamos a continuación:

En Quimobásicos nos interesa mucho tu opinión, ya que nos ayuda a brindarte un mejor servicio, por favor no dudes en hacernos saber cualquier comentario, critica, o sugerencia que tengas sobre la empresa, los productos Genetron, o el blog mismo. Para nosotros tu satisfacción es lo más importante.